m
m
Maximum specific growth rate, h
⫺1
.
T Time, h
A
t
Activity of bacterium at time t, U/g cell.
A
o
Initial activity of bacterium, U/g cell.
k
d
Dissociation constant, h
⫺1
REFERENCES
1. Chum, L.H. and Overend, R.P., Fuel Bioprocess Technol. 17, 187 (2001).
2. Flickinger, M.C. and Drew, S.W., In Encyclopedia of Bioprocess Technology: Fermentation, Biocatalysis, and
Bioseparation, vol. 2, 939, 1999.
3. Gunasekaran, P. and Raj, K.C., 2001. Ethanol fermentation technology - Zymomonas mobilis,
http://ces.iisc.ernet.in/curscinew/july10/articles14.htm.
4. Baily, J.E. and Ollis, D.F., “Biochemical Engineering Fundamentals”, chapter 3. McGraw-Hill, New York, 1986.
5. Ingram, L.O., Gomez, P.F., Lai, X., Moniruzzaman, M. and Wood, B.E., Biotechnol. Bioengng 58, 204 (1998).
6. Holzberg, I., Finn, R.K. and Steinkraus, K.H., Biotechnol. Bioengng 9, 413 (1967).
7. Nagodawithana, T.W. and Steinkraus, K.H. J. Appl. Env. Microbiol. 31, 158 (1976).
8. Vega, J.L., Clausen E.C. and Gaddy J.L., J. Enzyme Microb. Technol. 10, 390 (1988).
9. Takamitsu, I., Izumida, H., Akagi, Y. and Sakamoto, M. J. Fermentation Bioengng 75, 32 (1993).
10. Yamada, T., Fatigati, M.A. and Zhang M., Appl. Biochem. Biotechnol. 98, 899 (2002).
11. Najafpour, G., “Organic Acids for Biomass by Continuous Fermentation”, Resour. Consern. 17, 187 (1987).
(Riley, et al, 1996) (Senthuran, et al, 1997).
12. Gikas, P. and Livingston, A.G., Biotechnol. Bioengng 55, 660 (1997).
13. Riley, M.R., Muzzio, F.J., Buettner, H.M. and Reyes, S.C., Biotechnol. Bioengng 49, 223 (1996).
14. Senthuran, A., Senthuran, V., Mattiasson, B. and Kaul, R., Biotechnol. Bioengng 55, 841 (1997).
15. Summers, J.B., J. Biol Chem. 62, 248 (1924).
16. Miller, G.L. Anal. Chem. 31, 426 (1959).
17. Yuan, Y.J., Wang, S.H., Song, Z.X. and Gao, R.C., J. Chem. Technol. Biotechnol. 77, 602 (2002).
18. Najafpour, G.D., Younesi, H. and Ku Ismail, K.S., “Ethanol Fermentation in Immobilized Cell Reactor (ICR)
Using Saccharomyces cerevisiae”, Bioresource Technology, vol. 92/3, 2004, pp. 251–260.
8.7 FUNDAMENTALS OF IMMOBILISATION TECHNOLOGY, AND
MATHEMATICAL MODEL FOR ICR PERFORMANCE
It is well known that pure enzymes change their behaviour and stability when they are
immobilised. In the past two decades the immobilisation of microorganisms, cells and parts
of cells has gradually been introduced into microbiology and biotechnology. The cell
immobilisation techniques are modifications of the techniques developed for enzymes.
However, the larger size of microbes has influenced the techniques. As for immobilised
enzymes, two broad types of method have been used to immobilise microorganisms: attach-
ment to a support and entrapment.
8.7.1 Immobilisation of Microorganisms by Covalent Bonds
By these methods microorganisms are cross linked by chemical substances, e.g. by glutar-
dialdehyde. The surfaces (especially the proteins) of microorganisms are linked with the
222 BIOCHEMICAL ENGINEERING AND BIOTECHNOLOGY
Ch008.qxd 10/27/2006 10:44 AM Page 222