97
Inverse
Scattering
Method
g
u
-6uu
+ u '" 0
~
t x
xxx
I u
(x,
0)
1-
---------------------
------
- u
(x,
t)
(1)
direct
problem
eigenvalue
A (2)
scattering
data
scattering
data
at
at
t ..
t,
t ..
0,
Ixl
..
ell
time
evolution
of
Ixl
-+ ell
scatterin
data
The
properties
of
the
evolution
of
initial
data
comprising
only
solitons
follows
directly
from
this
approach
and
gives
rise
to
nonlinear
superposition
laws
for
solitons
.
There
are,
however,
easier
ways
of
obtaining
these
than
by means
of
the
inverse
scatter
ing
method which
takes
account
of
arbitrary
initial
data,
and
not
just
data
comprising
a
train
of
solitons.
For
the
details
of
the
various
steps
involved
we
refer,
for
example,
to
the
paper
by
Scott,
Chu,
Mclaughlin.
The
basic
paper
by
Ablowitz,
Kamp,
Newell and
Segur
presents
an
alternative
treatment
of
this
same
problem.
References
[1)
Taniuti,
T.,
Wei, C. C.
Reductive
perturbation
method
in
nonlinear
wave
propagat
ion
I,
J.
Phys. Soc.
Japan
24
(1968),
941-946.
[2)
Jeffrey,
A.,
Kakutani,
T. Weak
nonlinear
dispersive
waves: a
discussion
centred
on
the
Korteweg-de
Vries
equation,
SIAM
Appl. Math. Rev. 14
(1972),
582-643.
[3)
Jeffrey
, A. , Kawahara, T.
Multiple
scale
Fourier
transform:
an
application
to
nonlinear
dispersive
waves,
Wave
Motion, 1
(1979),
249-258.
[4)
Jeffrey,
A.
Far
fields,
Nonlinear
evolution
equations,
the
B~cklund
transformation
and
inverse
scattering,
Scheveningen
Differential
Equations
Conference,
August 1979,
Springer
Lecture
Notes
(in
press).
(5) Whitham, G. B. Two-timing,
variational
principles
and waves ,
in
Nonlinear
Wave Motion, Ed. A. C.
Newell,
Lectures
in
Applied
Maths, Vol.
15,
Am
. Math. Soc. (1974) , 97
-123.
[6) Zabusky, N.
J.,
Kruskal,
M.
D.
Interaction
of
solitons
in
a
collisionless
plasma and
recurrence
of
initial
states,
Phys.
Rev.
Lett.
15
(1965),
240-243.
(7)
Scott,
A.
C.,
Chu, F. Y. F
.,
McLaughlin, D.
W.
The
soliton.
A new
concept
in
applied
science,
Proc.
IEEE, 61
(1973),
1443-1483.
[8) Bu11ough, R. K., Caudrey, P.
J.
(Editors).
Solitons,
Lecture
Notes
in
Physics,
Springer
1979 .
[9)
Gardner,
C.
S.,
Greene, J . M.,
Kruskal,
M.
D.,
Miura,
R. M. Method
for
solving
the
KdV
equation,
Ph
ys.
Rev.
Lett.
19
(1976),
1095-1097.
(10)
Ab1ow
itz.
M.
J.,
Kamp,
D. J
.,
Newell,
A.
C.,
Segur,
H. The
inverse
scattering
transform
-
Fourier
anal
ysis
for
nonlinear
problems,
Stud
ies
in
App1
. Math. 53
(1974),
249-315.