86 Handbook of Chemoinformatics Algorithms
4. Proschak, E., Wegner, J. K., Schuller,A., Schneider, G., and Fechner, U., Molecular query
language (MQL)—a context-free grammar for substructure matching. J. Chem. Inf. Model.
2007, 47, 295–301.
5. Baumann, K., Uniform-length molecular descriptors for quantitative structure prop-
erty relationships (QSPR) and quantitative structure–activity relationships (QSAR):
Classification studies and similarity searching. Trends Anal. Chem. 1999, 18, 36–46.
6. Willighagen, E., Wehrens, R., and Buydens, L., Molecular chemometrics. Crit. Rev. Anal.
Chem. 2006, 36, 189–198.
7. Todeschini, R. and Consonni, V., Handbook of Molecular Descriptors; Volume 11 of
Methods and Principles in Medicinal Chemistry. Wiley-VCH: New York, 2000.
8. Duca, J. and Hopfinger, A., Estimation of molecular similarity based on 4D-QSAR
analysis: Formalism and validation. J. Chem. Inf. Model. 2001, 41, 1367–1387.
9. Stanton, D. T. and Jurs, P. C. Development and use of charged partial surface area structural
descriptors in computer-assisted quantitative structure–property relationship studies. Anal.
Chem. 1990, 62, 2323–2329.
10. Cramer III, R., Patterson, D., and Bunce, J., Comparitative molecular field analysis
(CoMFA). 1. Effect of shape on binding of steroids to carries proteins. J. Am. Chem.
Soc. 1988, 110, 5959–5967.
11. Kim, K., List of CoMFA references, 1997. Perspect. Drug Discov. Des. 1998, 12–14,
334–338.
12. Kim, K., Greco, G., and Novellino, E., A critical review of recent CoMFA applications.
Perspect. Drug Discov. Des. 1998, 12–14, 257–315.
13. Hopfinger, A., Wang, S., Tokarski, J., Jin, B., Albuquerque, M., Madhav, P., and
Duraiswami, C., Construction of 3D-QSAR models using the 4D-QSAR analysis for-
malism. J. Am. Chem. Soc. 1997, 119, 10509–10524.
14. Aires-De-Sousa, J., Hemmer, M., and Gasteiger, J., Prediction of 1H NMR chemical shifts
using neural networks. Anal. Chem. 2002, 74, 80–90.
15. Gasteiger, J., Sadowski, J., Schuur, J., Selzer, P., Steinhauer, L., and Steinhauer, V.,
Chemical information in 3D space. J. Chem. Inf. Comput. Sci. 1996, 36, 1030–1037.
16. Hemmer, M. C., Steinhauer, V., and Gasteiger, J., Deriving the 3D structure of organic
molecules from their infrared spectra. Vibrat. Spectros. 1999, 19, 151–164.
17. Perlstein, J., Steppe, K., Vaday, S., and Ndip, E. M. N., Molecular self-assemblies. 5.
Analysis of the vector properties of hydrogen bonding in crystal engineering. J. Am. Chem.
Soc. 1996, 118, 8433–8443.
18. Moulton, B. and Zaworotko, M. J., From molecules to crystal engineering: Supramolecular
isomerism and polymorphism in network solids. Chem. Rev. 2001, 101, 1629–1658.
19. De Gelder, R., Wehrens, R., and Hageman, J. A., generalized expression for the similarity
spectra: Application to powder diffraction pattern classification. J. Comput. Chem. 2001,
22, 273–289.
20. Hollingsworth, M. D., Crystal engineering: From structure to function. Science 2002,
295,
2410–2413.
21.
Ilyushin,
G., Blatov, N., and Zakutin, Y., Crystal chemistry of orthosilicates and their
analogs: The classification by topological types of suprapolyhedral structural units. Acta
Cryst. 2002, B58, 948–964.
22. Lommerse, J. P. M., Motherwell, W. D. S., Ammon, H. L., Dunitz, J. D., Gavezzotti, A.,
Hofmann, D. W. M., Leusen, F. J. J., et al., A test of crystal structure prediction of small
organic molecules. Acta Cryst. 2000, B56, 697–714.
23. Motherwell, W. D. S., et al., Crystal structure prediction of small organic molecules: A
second blind test. Acta Cryst. 2002, B58, 647–661.