114 Martin Campos Pinto
[6] M. Campos Pinto and M. Mehrenberger, Adaptive numerical resolution of the Vlasov equation,
Numerical methods for hyperbolic and kinetic problems, CEMRACS 2003/IRMA Lectures in
Mathematics and Theoretical Physics (S. Cordier, T. Goudon, M. Gutnic and E. Sonnendrücker,
eds.), European Mathematical Society, 2005.
[7] , Convergence of an adaptive semi-Lagrangian scheme for the Vlasov–Poisson system,
Numer. Math. 108 (2008), pp. 407–444.
[8] A. S. Cavaretta, W. Dahmen and C. A. Micchelli, Stationary subdivision, Mem. Amer. Math.
Soc. 93 (1991).
[9] C. Z. Cheng and G. Knorr, The integration of the Vlasov equation in configuration space, J.
Comput. Phys. 22 (1976), pp. 330–351.
[10] P. G. Ciarlet, Basic error estimates for elliptic problems, Handbook of numerical analysis, Vol.
II, North-Holland, Amsterdam, 1991, pp. 17–351.
[11] A. Cohen, Numerical analysis of wavelet methods, North-Holland, Amsterdam, 2003.
[12] A. Cohen, S. M. Kaber, S. Müller and M. Postel, Fully adaptive multiresolution finite volume
schemes for conservation laws, Math. Comp. 72 (2003), pp. 183–225.
[13] J. Cooper and A. Klimas, Boundary value problems for the Vlasov–Maxwell equation in one
dimension, J. Math. Anal. Appl. 75 (1980), pp. 306–329.
[14] G.-H. Cottet and P.-A. Raviart, Particle methods for the one-dimensional Vlasov–Poisson equa-
tions, SIAM J. Numer. Anal. 21 (1984), pp. 52–76.
[15] I. Daubechies, Ten lectures on wavelets, CBMS-NSF Regional Conference Series in Applied
Mathematics 61, SIAM, Philadelphia, 1992.
[16] G. Deslauriers and S. Dubuc, Symmetric iterative interpolation processes, Constr. Approx. 5
(1989), pp. 49–68.
[17] R. DeVore, Nonlinear approximation, Acta Numerica 7 (1998), pp. 51–150.
[18] N. Dyn and D. Levin, Subdivision schemes in geometric modelling, Acta Numerica 11 (2002),
pp. 73–144.
[19] R. T. Glassey, The Cauchy problem in kinetic theory, SIAM, Philadelphia, 1996.
[20] M. Gutnic, M. Haefele, I. Paun and E. Sonnendrücker, Vlasov simulations on an adaptive
phase-space grid, Comput. Phys. Comm 164 (2004), pp. 214–219.
[21] S. V. Iordanskij, The Cauchy problem for the kinetic equation of plasma, Amer. Math. Soc.
Transl. Ser. 2, 35 (1964), pp. 351–363.
[22] G. Rein, Collisionless kinetic equations from astrophysics – The Vlasov–Poisson system,
Handbook of Differential Equations, Evolutionary Equations, Vol. 3 (C. M. Dafermos and
E. Feireisl, eds.), Elsevier, Oxford, 2005.
[23] E. Sonnendrücker, J. Roche, P. Bertrand and A. Ghizzo, The semi-Lagrangian method for the
numerical resolution of the Vlasov equation, J. Comput. Phys. 149 (1999), pp. 201–220.
[24] A. A. Vlasov, A new formulation of the many particle problem (Russian), Akad. Nauk SSSR.
Zhurnal Eksper. Teoret. Fiz. 18 (1948), pp. 840–856.
Author information
Martin Campos Pinto, IRMA institute (Université de Strasbourg & CNRS), 7 rue René Descartes,
67084 Strasbourg, France.
E-mail: