492
Spatially
Distributed
Systems
and
Partial
Differential
Equation
Models
Keller,
E. F., and
Segel,
L. A.
(1970). Initiation
of
slime mold aggregation viewed
as an in-
stability.
7.
Theor. Biol.,
26,
399-415.
Keller,
E. F., and
Segel,
L. A.
(1971). Model
for
chemotaxis.
J.
Theor.
Biol,
30,
225–234.
Lauffenburger,
D. A.,
(1982). Influence
of
external concentration
fluctuations on
leukocyte
chemotactic orientation. CellBiophys.,
4,
177-209.
Lauffenburger,
D. A., and
Kennedy,
C.R.
(1983). Localized bacterial infection
in a
dis-
tributed model
for
tissue inflammation.
J.
Math. Biol.,
16,
141–163.
Lovely,
P. S., and
Dahlquist,
F. W.
(1975). Statistical measures
of
bacterial motility
and
chemotaxis.
J.
Theor.
Biol,
50,
477-496.
Okubo,
A.
(1986). Dynamical aspects
of
animal grouping: Swarms, schools,
flocks, and
herds.
Adv.
inBiophys.,
22,
1-94.
Segel,
L. A.
(1977).
A
theoretical study
of
receptor mechanisms
in
bacterial chemotaxis.
SIAMJ.
Appl. Math.,
32,
653-665.
Segel,
L. A.;
Chet,
L; and
Henis,
Y.
(1977).
A
simple quantitative assay
for
bacterial motil-
ity.
J.
Gen.
Microbiol,
98,
329–337.
Segel,
L. A., and
Jackson,
J.L.
(1973). Theoretical analysis
of
chemotactic movement
in
bacteria.
J.
Mechanochem. Cell
Motil,
2,
25-34.
Zigmond,
S. H.
(1977). Ability
of
polymorphonuclear leukocytes
to
orient
in
gradients
of
chemotactic
factors.
J.
Cell
Biol.,
75,
606-616.
Traveling
Waves
and
Fisher's Equation
See
Fisher (1937), Kolmogorov
et al.
(1937),
and the
following:
Fife,
P.C.
(1979).
Mathematical
Aspects
of
Reacting
and
Diffusing
Systems.
Springer-Ver-
lag,
New
York.
Hoppensteadt,
F. C.
(1975).
Mathematical
Theories
of
Populations:
Demographics,
Genet-
ics,
and
Epidemics. (Regional Conference Series
in
Applied Mathematics,
no.
20).
SIAM, Philadelphia.
Murray,
J. D.
(1977).
Lectures
on
Nonlinear
Differential
Equation
Models
in
Biology.
Clarendon
Press,
Oxford,
sec. 5.3.
Odell,
G. M.
(1980).
Biological waves.
In L. A.
Segel,
ed.,
Mathematical
Models
in
Molecu-
lar
and
Cellular Biology. Cambridge University Press, Cambridge.
The
Cell
Cycle
and
Models
for
Cancer
Chemotherapy
Aroesty,
J.;
Lincoln,
T.,
Shapiro,
N.; and
Boccia,
G.
(1973). Tumor growth
and
chemother-
apy: Mathematical methods, computer simulations,
and
experimental foundations.
Math.
Biosci.,
17,
243-300.
Bischoff,
K. B.;
Himmelstein,
K. J.;
Dedrick,
R. L.; and
Zaharko,
D. S.
(1973). Pharmacoki-
netics
and
cell population growth models
in
cancer chemotherapy. Chem.
Eng.
Med.
Biol,
(Advances
in
Chemistry
Series.),
118, 47-64.
McKendrick,
A. G.
(1926). Application
of
mathematics
to
medical problems. Proc. Edin.
Math.
Soc.,
44,
98–130.
Merkle,
T.C.;
Stuart,
R.N.;
and
Gofman,
J.W.
(1965).
The
Calculation
of
Treatment
Schedules
for
Cancer
Chemotherapy.
UCRL-14505.
University
of
California
Lawrence Livermore Radiation Laboratory, Livermore, Calif.