References 359
77. Breit, G. (1947) The scattering of slow neutrons by bound protons. I. Methods
of calculation, Phys. Rev. 71, 215–231.
78. Brezhnev, Yu.V. (2005) What does the integrability of the finite-gap/soliton
potentials mean? arxiv:nlin.SI/0505003; Historical remarks to finite-gap in te-
gration theory: elementary treatment of the theory, arxiv:nlin.SI/0504051; On
finite-gap potentials, arxiv:nlin.SI/0505015.
79. Brezhnev, Yu.V. and Leble, S.B. (2005) On integration of the closed KdV
dressing chain, arXiv:math-ph/0502052.
80. Burnchall, J.L. and Chaundy, T.W. (1922) Commutative ordinary differential
operators, Proc. London Math. Soc.,Ser.2,21, 420–440.
81. Calogero, F. and Degasperis, A. (1982) Solitons and the Spec tral Transform I,
North–Holland, Amsterdam.
82. Carbonaro, P., Compagno, G., and Persico, F. (1979) Canonical dressing of
atoms by intense radiation fields, Phys. Lett. A 73, 97–99.
83. Case, K.M. (1978) The N -soliton solution of the Benjamin-Ono equation, Proc.
Natl. Acad. Sci. USA 75, 3562–3563.
84. Chadan, K. and Sabatier, P.C. (1989) Inverse Problems in Quantum Scattering
Theory, Springer, New York, 2nd ed.
85. Chalych, O.A. (1998) Darboux transformations for multidimensional
Schr¨odinger operators, Russian Math. Surveys 53, 377–379.
86. Chen, H.H., Lee, Y.C., and Pereira, N.R. (1979) Algebraic internal wave soli-
tons and the integrable Calogero-Moser-Sutherland N -body problem, Phys.
Fluids 22, 187–188.
87. Cie´sli´nski, J. (1991) An effective method to compute N -fold Darboux matrix
and N-soliton surfaces, J. Math. Phys. 32, 2395–2399.
88. Cie´sli´nski, J. (1995) An algebraic method to construct the Darboux matrix,
J. Math. Phys. 36, 5670–5706.
89. Cie´sli´nski, J., Czachor, M., and Ustinov, N.V. (2003) Darboux covariant equa-
tions of von Neumann type and their generalization, J. Math. Phys. 44,
1763–1780.
90. Claude, C., Latifi, A., and Leon, J. (1991) Nonlinear resonant scattering and
plasma instability: an integrable model, J. Math. Phys. 32, 3321–3330.
91. Claude, C. and Leon, J. (1995) Theory of pump depletion and spike formation
in stimulated Raman scattering, Phys. Rev. Lett. 74, 3479–3482.
92. Cooper, F., Ginocchio, J.N., and Khare, A. (1987) Relationship between su-
persymmetry and solvable potentials, Phys. Rev. D 36, 2458–2473.
93. Cooper, F., Khare, A., and Sukhatme, U. (1995) Supersymmetry and quantum
mechanics, Phys. Rep. 251, 267–385, and references therein.
94. Crum, M.M. (1955) Associated Sturm–Liouville systems, Quart. J. Math.,
Oxford 6, 121–127.
95. Czachor, M. (1997) Nambu-type generalization of the Dirac equation, Phys.
Lett. A 225, 1–12.
96. Czachor, M., Doebner, H.-D., Syty, M., and Wasylka, K. (2000) von Neumann
equations with time-dependent Hamiltonians and supersymmetric quantum
mechanics, Phys. Rev. E 61, 3325–3329.
97. Czachor, M. and Kuna, M. (1998) Complete positivity of nonlinear evolution:
A case study, Phys. Rev. A 58, 128–134.
98. Czachor, M., Kuna, M., Leble, S.B., and Naudts, J. (2000) Nonlinear von
Neumann-type equations, in H.-D. Do ebner (ed.), Trends in Quantum Me-
chanics, World Scientific, Singapore, pp. 209–226.