A =< ∆, Q, q
0
, F, Φ > L
Σ = {a
1
, . . . , a
m
} Q = {q
0
, q
1
, . . . , q
n
} φ(a
i
) = d
i
1
d
i
2
. . . d
i
k
i
, d
i
l
∈ ∆ (1 ≤ l ≤ k
i
)
φ(a
i
) 6= ε
M =< Σ, Q, q
0
, F, Φ
M
>
φ
−1
(L)
q q
0
a ∈ Σ M A φ(a) 6= ε q q
0
a ∈ Σ φ(a) = ε M a
a φ
−1
(L)
q
j
∈ Q a
i
∈ Σ Φ
M
(q
j
, a
i
) = q
r
,
φ(a
i
) 6= ε A (q, φ(a)) `
∗
A
q
r
φ(a) = ε Φ
M
(q
j
, a
i
) = q
j
.
A Φ
M
q
j
∈ Q a
i
∈ Σ M
L
M
= φ
−1
(L) w = a
i
1
a
i
2
. . . a
i
k
∈
L
M
M q
0
, q
i
1
q
i
2
. . . q
i
k
q
i
k
∈ F Φ
M
A
q
0
q
i
k
∈ F φ(a
i
1
)φ(a
i
2
) . . . φ(a
i
k
) = φ(w)
w ∈ φ
−1
(L)
w = a
i
1
a
i
2
. . . a
i
k
∈ φ
−1
(L) u = φ(w) = φ(a
i
1
)φ(a
i
2
) . . . φ(a
i
k
) ∈
L A u, q
0
q
0
∈ F q
i
j
φ(a
i
1
)φ(a
i
2
) . . . φ(a
i
j
) u (j = 1, 2, . . . , k).
q
i
k
= q
0
j = 1, 2, . . . , k (q
i
j−1
, φ(a
i
j
) `
∗
A
q
i
j
.
Φ
M
M j = 1, 2, . . . , k
(q
i
j−1
, a
i
j
) `
M
q
i
j
. M q
0
, q
i
1
q
i
2
. . . q
i
k
w
q
i
k
= q
0
w ∈ L
M
2
Σ ∆ φ
φ(a) = 00, φ(b) = ε, φ(c) = 101 L = {w | w
}
A L
a b
c
M
q
2
q
3
q
0
M L
M
= φ
−1
(L) = {u | u c}.