characteristics of the source. These periodic magnetic arrays are referred to as undulators
if the radiation emitted by successive bends adds coherently, or as wigglers if the radiation
emitted by successive bends adds incoherently. Wigglers, undulators, and their properties
will be discussed in detail later.
Third-generation synchrotrons are the adaptation of second-generation synchrotrons to
produce small electron beam size and divergence, and the straight sections are optimized
for the inclusion of insertion devices. Figure 5(a) shows schematically the organization of
a modern synchrotron radiation facility, showing how the electron beam may be modified
to produce radiation of different characteristics. Third-generation synchrotrons have their
optics arranged so as to produce electron beams of small size, and the dimensions of the
electron beam source are referred to as s
x
and s
y
for the beam sizes in the horizontal and
the vertical directions, respectively. The amount of radiation collected in the horizontal
plane by an experiment depends on the size of the exit apertures in the horizontal plane.
The effective emission angle in the vertical plane is limited to ±1/g of the horizontal plane,
and is approximately
The machine characteristics of the Australian Synchrotron are given in Table 2. The
emittance is a measure of the intrinsic source size of the synchrotron radiation storage ring.
In insertion devices, the electrons travel through a periodic linear magnetic structure. In
such a structure, the magnetic induction may be devised to be sinusoidal and be oriented
normal to the plane of the electron orbit, such that
where l
u
is the wavelength of the magnetic array. This imposes a sinusoidal motion on the
electron, and this is constrained to the horizontal plane. This is illustrated schematically in
Fig. 5(b). An important parameter describing the motion of the electron is the deflection
parameter K (= eB
o
l
u
/2pmc = 0.934 l
u
B
o
). In terms of K, the maximum angular deflection
from the orbit is d = K/g.
For K£1, radiation from the bends can interfere with one another because the excursion
of the electrons lies within the 1/g limit for the radiation cone. This particular structure
gives rise to undulator radiation.
For K>>1, interference effects are not of importance, and the radiation that emanates
from this structure is referred to as wiggler radiation.
2.2.2.1. Wiggler radiation. K is usually a large number (>10) for periodic magnetic arrays
designed to emit wiggler radiation. In this case, the radiation from different parts of the
electron trajectory add incoherently, and the total flux from the array is 2N times the appro-
priate formula for a bending magnet, with the values of B and R taken at the point of the