254 BIBLIOGRAPHY
[MNS05] W. Martens, F. Neven, and T. Schwentick. Which XML schemas
admit 1-pass preorder typing? In Database Theory - ICDT 2005,
10th I nternational Conference, Proceedings, volume 3363 of Lecture
Notes in Computer Science, pages 68–82. Springer, 2005.
[MNSB06] W. Martens, F. Neven, T. Schwentick, and G. J. Bex. Expres-
siveness and complexity of XML schema. ACM Transactions on
Database Systems, 31(3):770–813, 2006.
[Mon81] J. Mongy. Transformation de noyaux reconnaissables d’arbres.
Forˆets RATEG. PhD thesis, Laboratoire d’Informatique Fonda-
mentale de Lille, Universit´e des Sciences et Technologies de Lille,
Villeneuve d’Ascq, France, 1981.
[MS94] A. J. Mayer and L. J. Stockmeyer. Word problems – this time with
interleaving. Information and Computation, 115(2):293–311, 1994.
[MS96] A. Mateescu and A. Salomaa. Aspects of classical language theory.
In G. Rozenberg and A. Salomaa, editors, Handbook of Formal
Languages, volume 1, pages 175–246. Springer Verlag, 1996.
[MSV03] T. Milo, D. Suciu, and V. Vianu. Typechecking for XML trans-
formers. Journal of Comput. and Syst. Sci., 66(1):66–97, 2003.
[Mur00] M. Murata. “Hedge Automata: a Formal Model for XML
Schemata”. Web page, 2000.
[MW67] J. Mezei and J. B. Wright. Algebraic automata and context-free
sets. Information and Control, 11:3–29, 1967.
[Nev02] F. Neven. Automata, logic, and XML. In Computer Science Logic,
16th International Workshop, CSL 2002, Proceedings, volume 2471
of Lecture Notes in Computer Science, pages 2–26. Springer, 2002.
[Niv68] M. Nivat. Transductions des langages de Chomsky. Th`ese d’etat,
Paris, 1968.
[NP89] M. Nivat and A. Podelski. Resolution of Equations in Algebraic
Structures, volume 1, chapter Tree monoids and recognizable sets
of finite trees, pages 351–367. Academic Press, New York, 1989.
[NP97] M. Nivat and A. Podelski. Minimal ascending and descending tree
automata. SIAM Journal on Computing, 26(1):39–58, Febr uary
1997.
[NSV04] F. Neven, T. Schwentick, and V. Vianu. Finite state machines for
strings over infinite alphabets. ACM Transactions on Computa-
tional Logic, 5(3):403–435, 2004.
[NT99] T. Nagaya and Y. Toyama. Decidability for left-linear growing
term rewriting s ystems. In M. Rusinowitch F. Narendran, editor,
10th International Conference on Rewriting Techniques and Appli-
cations, volume 1631 of Lecture Notes in Computer Science, pages
256–270, Trento, Italy, 1999. Springer Verlag.
TATA — November 18, 2008 —