PLANETARY THEORY THE MARAQJIEH SCHOOL
by
many astronomers, but until Il-Khanid times no one seems to have
produced a model capable of competing with Ptolemy's in
terms
of
accuracy,
and which would at the same time involve only uniform
circular motions. Such a development was, however, inaugurated by
Nasir al-Dln Tusi and carried through by associates of his at the
Maragheh observatory. He seems to have been the first to notice
that
if
one circle rolls around inside the circumference of
another,
the second
circle
having twice the radius of the first,
then
any point on the peri-
phery of the first circle describes a diameter of the second. This rolling
device
can also be regarded as a linkage of two equal and constant
length vectors rotating at constant speed (one twice as fast as the other),
and hence has been called a Tusi-couple. Nasir al-Din, by properly
placing
such a couple on the end of a vector emanating from the
Ptolemaic equant centre, caused the vector periodically to expand and
contract. The period of its expansion being equal to
that
of the epi-
cycle's
rotation about the
earth,
the end-point of the couple carries the
epicycle
centre with it and traces out a deferent which
fulfils
all the
conditions imposed upon it by Ptolemy's observations. At the same
time, the whole assemblage is a combination of uniform circular
motions, hence unobjectionable, and it preserves the equant property,
also demanded by the phenomenon itself.
Other astronomers of the Maragheh group continued work along
these lines, although their results have not as yet been
fully
recovered. In
all
cases their efforts, usually successful, seem to have been to construct
combinations of uniform circular motions satisfying Ptolemaic
boundary conditions and preserving the equant.
Among
the
five
planets visible to the naked eye, Mercury is by far
the most irregular. Hence the construction of a satisfactory model for
predicting its positions offers more difficulty
than
does
that
for any
other planet.
After
repeated efforts, made long after he had left
Maragheh, Qutb al-Din Shirazi, a younger associate of Nasir al-Din,
produced the equivalent of the configuration illustrated in fig. 4.
It satisfies all the conditions demanded by Ptolemy for the orbit of
Mercury,
and as such probably marks the apex of the techniques
developed
by the Maragheh school. Without going into details we note
that,
exclusive of the
epicycle
radius (not shown in the figure), it
involves
some six rotating vectors, of which two pairs
(r
2
r
3
and
r
4
r
5
)
are Tusi-couples with different periods.
In sketching these developments, it has been necessary to omit many
669