Strings, Loops, Knots, and Gauge Fields 165
Lectures on Non-perturbative Canonical Quantum Gravity, Singa-
pore, World Scientific, 1991.
2. A. Ashtekar, unpublished notes, June 1992.
3. A. Ashtekar and C. J. Isham, Represe ntations of the holonomy alge-
bra of gravity and non-abelian gauge theories, Classical & Quantum
Gravity 9 (19 92), 1069–110 0.
4. A. Ashtekar and J. Lewandowski, Completeness of Wilso n loop func-
tionals on the moduli space of SL(2, C) and SU (1, 1) connections,
Classical & Quantum Gravity 10 (1993) 673–694.
Representation theory of ana lytic holonomy C*- Algebras, this vol-
ume.
5. A. Ashtekar and R. Loll, New loop representations for 2+1 gravity,
Syracuse U. preprint.
6. A. Ashtekar, V. Husain, C. Rovelli, J. Samuel, and L. Smolin, 2+1
gravity as a toy model for the 3+1 theory, Classical & Quantu m
Gravity 6 (19 89) L185–L193.
7. M. Atiyah, The Geometry and Physics of Knots, Cambridge U.
Press, Cambridge, 1990.
8. M. Atiyah and R. Bott, The Yang–Mills equations over Riemann
surfaces, Phil. Trans. R. Soc. A308 (1983) 523–615.
9. J. Baez, Quantum gravity and the algebra of tangles, Classical &
Quantum Gravity 10 (1993) 673–694.
10. J. Baez, Diffeomorphism-invariant generalized measures on the
space of connections modulo gauge transformations, to appear in
the proceedings of the Conference on Quantum To po logy, eds L.
Crane and D. Yetter, hep-th/930504 5.
Link invariants, functional integration, and holonomy algebras, U.
C. Riverside preprint, hep-th/9301063.
11. M. Blau and G. Thompson, Topological gauge theories of antisym-
metric tensor fields, Ann. Phys. 205 (1991) 130–172.
Quantum Yang–Mills theory on arbitrary surfaces, Int. J. Mod.
Phys. A7 (1992) 3781–3806.
12. S. Carlip, Six ways to quantize (2+1)-dimensional gravity, U. C.
Davis preprint, gr-qc/9305020.
13. J. S. Carter, How Surfaces Intersect in Space: an Introduction to
Topology, Wor ld Scientific, Singapore, 1993.
14. J. S. Carter and M. Saito, Reidemeister moves for surface isotopies
and their interpretation as moves to movies, U. of South Alabama
preprint.
Knotted surfaces, braid movies, and beyond, this volume.
15. P. Cotta-Ramusino and M. Martellini, BF theories and 2-knots, this