xi
CHAPTER
5
FILTRATION OF IMMISCIBLE LIQUIDS
...............................
199
1
.
Reduction of equations. formulation of problem
..............
199
1
.
Peculiarities of equations. the
choice of the sought
functions
...........................................
199
2
. Initial boundary value problem
..........................
202
3
.
Outline of conditions which provide summarized filtrat-
ion velocity be independent of saturation
...........
203
2
.
Determination of generalized solutions . Problem regulariz-
ation. maximum and compactness principles
...............
203
1
. Generalized solutions
...................................
203
2
. Regularization
..........................................
206
3
. The maximum principle
...................................
206
4
. Compactness principle for a non-stationary
problem
solution
............................................
209
3
.
The theorem of existence of generalized solutions
...........
212
1
. Galerkin approximations in an auxiliary problem I
.......
213
3
.
A priori estimates independent of h
.....................
216
2
.
Compactness of Galerkin's approximations and a limit
transition over
N
...................................
214
4
. Limiting transition over
E
..............................
218
4
. Determination of the summed velocity of inhomogeneous
liquid filtration
.......................................
220
2
. Continuity of solutions over the variable x
.............
223
1
.
The statement of problem
................................
220
3
.
Solutions belonging to the class
).
q
>2
.........
224
4
.
Estimates of higher derivatives of a solution
...........
226
5
. Smooth solutions on t parameter
.........................
228
summed filtration velocity
..............................
230
1
. Problem design
..........................................
230
2
.
The solution properties for parabolic equations
.........
230
3
. A regular problem of a two-phase filtration
.............
233
4
. Singular problem
(0
<s
Q
1)
.............................
238
1
.
Problem design
..........................................
242
2
. Regular problem
.........................................
242
3
.
Degenerating problem
....................................
246
Wi(
5
. On distribution of phase saturation on a given field of a
6
. On a joint problem
..........................................
242
7
.
Stationary problem
..........................................
246
1
. Existence of generalized solutions ......................
246
2
. Choice
of
other searched functions
......................
248
3
. Regular generalized solutions
...........................
249
4
.
Degenerating case
.......................................
250
5
. Uniqueness
of
regular solutions
.........................
251
8
.
Further smoothness of regular non-stationary problem
solutions
...............................................
252
1
.
Introduction
............................................
252
3
. Continuity
of
regular solutions by HBlder
...............
251
4
.
Further smoothness of solutions
.........................
260
5
. Estimate of regular solutions in W;'l(Q')
...............
262
6
. Stability and uniqueness of solutions
...................
264
I
. Asymptotic behaviour of solutions for t
+
-
.............
261
2
.
Auxiliary evaluations and inequalities
..................
253