December 28, 2009 12:15 WSPC - Proceedings Trim Size: 9in x 6in recent
261
5. D. R. Adams, On the existence of strong type estimates in IR
N
, Ark. Mat.,
14 (1976) 125-140.
6. D. R. Adams, Sets and functions of finite L
p
-capacity, Indiana Univ. Math.
J., 27 (1978a) 611-627.
7. D. R. Adams, Quasi-additivity and sets of finite L
p
-capacity, Pacific Journal
Math., 79 (1978) 283-291.
8. D. R. Adams, Capacity and the obstacle problem, Appl. Math. Optim., 8
(1981) 39-57.
9. D. R. Adams, Lectures on L
p
-Potential Theory, Department of Mathematics,
University of Ume˚a, 1981.
10. D. R. Adams, The exceptional sets associated with the Besov spaces, in Linear
and Complex Analysis Problem Book. 199 Research Problems (V. P. Havin,
S. V. Hruˇsˇc¨ev, N. K. Nikol’skii, eds.), Lecture Notes in Math. 1043, 515-
518, Springer, Berlin Heidelberg, 1984. Also in Linear and Complex Analysis
Problem Book 3, Part II (V. P. Havin, N. K. Nikol’skii, eds.) Lecture Notes
in Math. 1574, 169-172, Springer, Berlin Heidelberg, 1994.
11. D. R. Adams, Weighted nonlinear potential theory, Trans. Amer. Math. Soc.
287 (1986) 73-94.
12. D. R. Adams, A note on the Choquet integrals with respect to Hausdorff
capacity, in Function Spaces and Applications, Proc. Lund 1986 (M. Cwikel,
J. Peetre, Y. Sagher, H. Wallin, eds.) Lecture Notes in Math. 1302, 115-124,
Springer, Berlin Heidelberg, 1988.
13. D. R. Adams, A sharp inequality of J. Moser for higher order derivatives,
Ann. of Math., 128 (1988) 385-398.
14. D. R. Adams and A. Heard, The necessity of Wiener test for some semi-linear
elliptic equations, Indiana Univ. Math. J., 41 (1992) 109-124.
15. D. R. Adams and L. I. Hedberg, Inclusion relation among fine topologies in
nonlinear potential theory, Indiana Univ. Math. J., 33 (1984) 117-126.
16. D. R. Adams, L. I. Hedberg, Function spaces and potential theory. Springer-
Verlag, Berlin, New York 1996.
17. D. R. Adams and J. L. Lewis, Fine and quasi connectedness in nonlinear
potential theory, Ann. Inst. Fourier (Grenoble) 35:1 (1985) 57-73.
18. D. R. Adams and N. G. Meyers, Thinness and Wiener criteria for nonlinear
potentials, Indiana Univ. Math. J., 22 (1972) 169-197.
19. D. R. Adams and N. G. Meyers, Bessel potentials. Inclusion relations among
classes of exceptional sets, Indiana Univ. Math. J., 22 (1973) 873-905.
20. D. R. Adams and M. Pierre, Capacitary strong type estimates in semi-linear
problems, Ann. Inst. Fourier (Grenoble) 41 (1991) 117-135.
21. D. R. Adams and J. C. Polking, The equivalence of two definitions of capacity,
Proc. Amer. Math. Soc., 37 (1973) 529-534.
22. R. Adams, Sobolev spaces, Acad. Press, New York, London, Torento, (1975).
23. R. Adams, On the Orlicz-Sobolev imbedding theorem, J. Func. Analysis, 24
(1977) 241-257.
24. H. Aikawa, Tangential boundary behavior of Green potentials and contractive
properties of L
p
-capacities, Tokyo Math. J. 9 (1986) 223-245.
25. H. Aikawa, Comparison of L
p
-capacity and Hausdorff measure, Complex