Томский политехнический университет. Доцент Галанов Ю.И. Лекция для
студентов по учебной дисциплине «Высшая математика» 55 слайдов. 2-й
курс. 2011 г.
Векторы.
Изображения и обозначения.
Компланарные векторы.
Линейные операции над векторами.
Свойства линейных операций над венкторами.
Линейная зависимость векторов. Аффинный базис.
Базис на плоскости.
Базис в трёхмерном пространстве.
Проекция вектора на ось.
Теоремы о проекциях.
Прямоугольный декартов базис.
Длина вектора.
Направляющие косинусы вектора.
Деление отрезка в данном отношении.
Скалярное произведение.
Средства скалярного произведения.
Вычислительные проекции вектора на вектор.
Скалярное произведение в декартовой системе координат.
Скалярное произведение орт
Итоговые формулы.
Векторное произведение.
Модуль векторного произведения.
Основные свойства векторного произведения.
Векторное произведение в декартовой системе координат.
Смешанное произведение трёх векторов.
Смешанное произведение в декартовой системе координат.
Геометрический смысл смешанного произведения.
Свойства смешанного произведения.
Условие компланарности трёх векторов.
Изображения и обозначения.
Компланарные векторы.
Линейные операции над векторами.
Свойства линейных операций над венкторами.
Линейная зависимость векторов. Аффинный базис.
Базис на плоскости.
Базис в трёхмерном пространстве.
Проекция вектора на ось.
Теоремы о проекциях.
Прямоугольный декартов базис.
Длина вектора.
Направляющие косинусы вектора.
Деление отрезка в данном отношении.
Скалярное произведение.
Средства скалярного произведения.
Вычислительные проекции вектора на вектор.
Скалярное произведение в декартовой системе координат.
Скалярное произведение орт
Итоговые формулы.
Векторное произведение.
Модуль векторного произведения.
Основные свойства векторного произведения.
Векторное произведение в декартовой системе координат.
Смешанное произведение трёх векторов.
Смешанное произведение в декартовой системе координат.
Геометрический смысл смешанного произведения.
Свойства смешанного произведения.
Условие компланарности трёх векторов.