• формат pdf
  • размер 10.63 МБ
  • добавлен 15 декабря 2011 г.
Thompson J.R. Empirical Model Building
Publisher: Wiley | 1989 | ISBN: 9780471601050 | 256 pages
A hands-on approach to the basic principles of empirical model building. Includes a series of real-world statistical problems illustrating modeling skills and techniques. Covers models of growth and decay, systems where competition and interaction add to the complexity of the model, and discusses both classical and nonclassical data analysis methods.
Contents:
Models of Growth and Decay.
Models of Competition, Combat, and Epidemic.
Simulation and the Coming Qualitative Change in Scientific Modeling.
Some Techniques of Nonstandard Data Analysis.
Paradoxes and False Trails.
Appendices.
Index.
Похожие разделы
Смотрите также

Box George E.P. Statistics for Experimenters: Design, Innovation, and Discovery (Cтатистика для экспериментаторов: дизайн, инновации и открытия)

  • формат pdf
  • размер 29.91 МБ
  • добавлен 26 апреля 2011 г.
Wiley-Interscience : 2005 , 633 pages , 2nd Edition A Classic adapted to modern times . Rewritten and updated, this new edition of Statistics for Experimenters adopts the same approaches as the landmark First Edition by teaching with examples, readily understood graphics, and the appropriate use of computers. Catalyzing innovation, problem solving, and discovery, the Second Edition provides experimenters with the scientific and statistical tools...

Devore J.L., Berk K.N. Modern Mathematical Statistics with Applications

  • формат pdf
  • размер 5.44 МБ
  • добавлен 06 сентября 2011 г.
Thompson, 2006. - 848 pages. Many mathematical statistics texts are heavily oriented toward a rigorous mathematical development of probability and statistics, without emphasizing contemporary statistical practice. "Modern Mathematical Statistics with Applications" strikes a balance between mathematical foundations and statistical practice. Accomplished authors Jay Devore and Ken Berk first engage students with real-life problems and scenarios an...

Fisz M. Probability Theory and Mathematical Statistics

  • формат djvu
  • размер 7.35 МБ
  • добавлен 04 января 2011 г.
John Wiley & Sons, 1963. - 695 pages. Probability theory can be understood as a mathematical model for the intuitive notion of uncertainty. Without probability theory all the stochastic models in Physics, Biology, and Economics would either not have been developed or would not be rigorous. Also, probability is used in many branches of pure mathematics, even in branches one does not expect this, like in convex geometry.

Galen R. Shorack, Jon A. Wellner, Empirical Processes With Applications to Statistics

  • формат djvu
  • размер 4.44 МБ
  • добавлен 17 ноября 2011 г.
John Wiley & Sons, 938 pages, 1986. This is the first book to summarize a broad cross-section of the large volume of literature available on one-dimensional empirical processes.

Hosmer D., Lemeshow S. Applied Logistic Regression. 2nd ed, 2000

  • формат djvu
  • размер 3.23 МБ
  • добавлен 22 сентября 2010 г.
Introduction to the Logistic Regression Model. Multiple Logistic Regression. Interpretation of the Fitted Logistic Regression Model. Model-Building Strategies and Methods for Logistic Regression. Assessing the Fit of the Model. Application of Logistic Regression with Different Sampling Models. Logistic Regression for Matched Case-Control Studies. Special Topics: The Multinomial Logistic Regression Model; Ordinal Logistic Regression Models; Logist...

Koller D., Friedman N. Probabilistic Graphical Models: Principles and Techniques

  • формат pdf
  • размер 66.17 МБ
  • добавлен 22 мая 2011 г.
The MIT Press, 2009. - 1208 pages. Most tasks require a person or an automated system to reason—to reach conclusions based on available information. The framework of probabilistic graphical models, presented in this book, provides a general approach for this task. The approach is model-based, allowing interpretable models to be constructed and then manipulated by reasoning algorithms. These models can also be learned automatically from data, all...

Lamberton D., Lapeyre P. Introduction to stochastic calculus applied to finance (2000)

  • формат pdf
  • размер 15.77 МБ
  • добавлен 12 марта 2011 г.
Boca Raton, London, New York, Washington DC: Chapman & Hall/CRC. - 2000. - 195 p. Contents: Introduction. Options. Arbitrage and put/call parity. Black-Scholes model and its extensions. Contents of the book. Acknowledgements. Discrete-time models. Discrete-time formalism. Martingales and arbitrage opportunities. Complete markets and option pricing. Problem: Cox, Ross and Rubinstein model. Option stopping problem and American options. Stoppin...

Ross S.M. Simulation

  • формат pdf
  • размер 24.6 МБ
  • добавлен 02 июня 2010 г.
2006. In this text we show how to analyze a model by use of a simulation study. In particular, we first show how a computer can be utilized to generate random (more precisely, pseudorandom) numbers, and then how these random numbers can be used to generate the values of random variables from arbitrary distributions. Using the concept of discrete events we show how to use random variables to generate the behavior of a stochastic model over time. B...

Royston P., Sauerbrei W. Multivariable model-building: a pragmatic approach to regression analysis based on fractional polynomials for continuous variables

  • формат pdf
  • размер 7.11 МБ
  • добавлен 19 сентября 2011 г.
Chichester, JohnWiley & Sons Ltd, 2008. - 324p. Работа посвящена построению математических моделей (на примере медицинских и биологических задач) при помощи регрессионного анализа с использованием полиномов дробных степеней (ограничиваясь набором -2; -1; -0.5; 0; 0.5; 1; 2, причём под "степенью 0" понимается логарифмическое преобразование). Рассматриваются вопросы выбора подмножества переменных, включения в рассмотрение, наряду с количествен...

Vapnik V.N. Statistical Learning Theory

  • формат pdf
  • размер 26.69 МБ
  • добавлен 16 августа 2011 г.
Wiley-Interscience, 1998. - 740 pages. A comprehensive look at learning and generalization theory. The statistical theory of learning and generalization concerns the problem of choosing desired functions on the basis of empirical data. Highly applicable to a variety of computer science and robotics fields, this book offers lucid coverage of the theory as a whole. Presenting a method for determining the necessary and sufficient conditions for co...