Cambridge University Press, 2004, 378 pages
This book provides a self-contained and systematic introduction to classical electron theory and nonrelativistic quantum electrodynamics. The first half of the book covers the classical theory in much detail, which the second half explores quantum theory, leading to a coherent presentation of non-relativistic quantum electrodynamics. It covers the interaction between charges and the Maxwell field, with particular focus on the derivation of radiative friction. It provides a coherent presentation with emphasis on radiation phenomena and relaxation to the ground state, space-adiabatic limit, effective mass and g-factor, and removal of the ultraviolet cut-off.
Suitable as a supplementary text for graduate courses, this book will also be a valuable reference for researchers in mathematical physics, classical electrodynamics, quantum optics, and applied mathematics.
This book provides a self-contained and systematic introduction to classical electron theory and nonrelativistic quantum electrodynamics. The first half of the book covers the classical theory in much detail, which the second half explores quantum theory, leading to a coherent presentation of non-relativistic quantum electrodynamics. It covers the interaction between charges and the Maxwell field, with particular focus on the derivation of radiative friction. It provides a coherent presentation with emphasis on radiation phenomena and relaxation to the ground state, space-adiabatic limit, effective mass and g-factor, and removal of the ultraviolet cut-off.
Suitable as a supplementary text for graduate courses, this book will also be a valuable reference for researchers in mathematical physics, classical electrodynamics, quantum optics, and applied mathematics.