• формат djvu
  • размер 4.44 МБ
  • добавлен 03 февраля 2011 г.
Schiff J.L. Cellular Automata: A Discrete View of the World
Wiley-Interscience, 2008, 272 p. The field of cellular automata (CA) is one that appears to be finite, yet unlimited, although it is a point of major debate. Where the ultimate conclusion lands depends on the fundamental origin of complexity, in particular that of intelligence. Some very sound thinkers argue that the universe itself is a complex CA, all of the phenomena we see are fundamentally explainable by a set of simple rules whereby actions are a consequence of state changes based on those rules. The apparent complexity that we perceive is due to the enormous number of objects that are involved and the number of different interactions that take place between them.
Cellular automata became an area of mainstream study when the Game of Life was developed. The fascinating feature of the game is that a small set of such simple rules can lead to what appear to be complex individual and collective behaviors. Schiff begins with the definitions of basic cellular automata, steps through the appearance of complexity and closes with some of the major arguments in favor of the literally universal applicability of CA.
The level of mathematics is fairly low; the most complex areas are the recurrence equations that define the next state and a few partial derivatives. With some additional explanation, the material is within the grasp of the second year math major. Most of the more complex mathematics can be skipped and the reader will still be able to understand and appreciate what CA are and some of the ways they can be used to model complex activities. This is the text I would use if I were to ever teach a special topics class in CA.
This book provides an excellent overview of the field of cellular automata. It brings together a broad range of concepts and ideas which have been percolating over the past 70 years. In many ways the field of cellular automata and its offshoots remind me of the principles and ideas expounded on in Thomas Kuhn's book `The Structure of Scientific Revolutions'. For this field is truly revolutionary in its ability to easily show the power of emergent properties from simple rules.
The flow of the book is easy to understand and the documentation and references are excellent. The prose is well written and the author's ability to clarify basic ideas is exceptional.
Похожие разделы
  1. Академическая и специальная литература
  2. Биологические дисциплины
  3. Матметоды и моделирование в биологии
  1. Академическая и специальная литература
  2. Геологические науки и горное дело
  3. Матметоды и моделирование в горно-геологической отрасли
  1. Академическая и специальная литература
  2. Информатика и вычислительная техника
  3. Компьютерное моделирование
  1. Академическая и специальная литература
  2. Математика
  3. Высшая математика (основы)
  4. Математика для инженерных и естественнонаучных специальностей
  1. Академическая и специальная литература
  2. Математика
  3. Вычислительная математика
  1. Академическая и специальная литература
  2. Математика
  3. Математическая физика
  1. Академическая и специальная литература
  2. Машиностроение и металлообработка
  3. Конструирование и проектирование в машиностроении
  4. Матметоды и моделирование в машиностроении
  1. Академическая и специальная литература
  2. Междисциплинарные материалы
  3. Моделирование
  1. Академическая и специальная литература
  2. Наноматериалы и нанотехнологии
  3. Матметоды и моделирование в нанотехнологии
  1. Академическая и специальная литература
  2. Промышленное и гражданское строительство
  3. Матметоды и моделирование в строительстве
  1. Академическая и специальная литература
  2. Радиоэлектроника
  3. Матметоды и моделирование в радиоэлектронике
  1. Академическая и специальная литература
  2. Связь и телекоммуникации
  3. Матметоды и моделирование в связи и телекоммуникациях
  1. Академическая и специальная литература
  2. Топливно-энергетический комплекс
  3. Математические задачи энергетики
  1. Академическая и специальная литература
  2. Химия и химическая промышленность
  3. Матметоды и моделирование в химии
  1. Академическая и специальная литература
  2. Экологические дисциплины
  3. Матметоды и моделирование в экологии
Смотрите также

Bailly F., Longo G. Mathematics and the Natural Sciences: The Physical Singularity of Life

  • формат pdf
  • размер 3.13 МБ
  • добавлен 16 ноября 2011 г.
Imperial College Press, 2011. - 336 pages. This book identifies the organizing concepts of physical and biological phenomena by an analysis of the foundations of mathematics and physics. Our aim is to propose a dialog between different conceptual universes and thus to provide a unification of phenomena. The role of 'order" and symmetries in the foundations of mathematics is linked to the main invariants and principles, among them the geodesic p...

Cartier P.E., Julia B., Moussa P., Vanhove P. (editors) Frontiers in Number Theory, Physics, and Geometry II: On Conformal Field Theories, Discrete Groups and Renormalization

  • формат pdf
  • размер 4.68 МБ
  • добавлен 17 апреля 2011 г.
Springer, 2007. - 789 Pages. Ten years after a 1989 meeting of number theorists and physicists at the Centre de Physique des Houches, a second event focused on the broader interface of number theory, geometry, and physics. This book is the first of two volumes resulting from that meeting. Broken into three parts, it covers Conformal Field Theories, Discrete Groups, and Renormalization, offering extended versions of the lecture courses and shorte...

Chopard B., Droz M. Cellular Automata Modeling of Physical Systems

  • формат djvu
  • размер 4.68 МБ
  • добавлен 03 февраля 2011 г.
Cambridge University Press, 1998, 341 p. This book provides an introduction to cellular automata and lattice Boltzmann techniques. It begins with a chapter introducing the basic concepts of this developing field; a second chapter describes methods used in cellular automata modeling. Following chapters discuss the statistical mechanics of lattice gases, diffusion phenomena, reaction-diffusion processes and nonequilibrium phase transitions. A final...

Ilachinski A. Cellular Automata: A Discrete Universe

  • формат djvu
  • размер 11.55 МБ
  • добавлен 03 февраля 2011 г.
World Scientific Publishing Company,2001, 839 p. Cellular automata are a class of spatially and temporally discrete mathematical systems characterized by local interaction and synchronous dynamical evolution. Introduced by the mathematician John von Neumann in the 1950s as simple models of biological self-reproduction, they are prototypical models for complex systems and processes consisting of a large number of simple, homogeneous, locally inter...

Landau R., P?ez M., Computational Physics - Problem Solving with Computers

  • формат djvu
  • размер 4.66 МБ
  • добавлен 16 октября 2010 г.
Wiley-Interscience, 1997. ISBN: 0471115908 Help students master real-world problems as they develop new insight into the physical sciences Problems in the physical sciences that once baffled and frustrated scientists can now be solved easily with the aid of a computer. Computers can quickly complete complex calculations, provide numerical simulations of natural systems, and explore the unknown. Computational Physics shows students how to use co...

Macucci M. Quantum Cellular Automata: Theory, Experimentation And Prospects

  • формат djvu
  • размер 3.26 МБ
  • добавлен 03 февраля 2011 г.
Imperial College Press, 2006, 300 p. The Quantum Cellular Automaton (QCA) concept represents an attempt to break away from the traditional three-terminal device paradigm that has dominated digital computation. Since its early formulation in 1993 at Notre Dame University, the QCA idea has received significant attention and several physical implementations have been proposed. This book provides a comprehensive discussion of the simulation approache...

Nanxian C. Mobius Inversion in Physics

  • формат pdf
  • размер 5.78 МБ
  • добавлен 05 июня 2011 г.
World Scientific Publishing Company, 2010. - 288 pages. This book attempts to bridge the gap between the principles of pure mathematics and the applications in physical science. After the Mobius inversion formula had been considered as purely academic, or beyond what was useful in the physics community for more than 150 years, the apparently obscure result in classical mathematics suddenly appears to be connected to a variety of important invers...

Raabe D. Computational Materials Science. The Simulation of Materials Microstructures and Properties

  • формат djvu
  • размер 4.23 МБ
  • добавлен 14 августа 2011 г.
Wiley-VCH, Weinheim, New York, 1998, 380 pp. - ISBN 3-527-29541-0 The recent advance of numerical prediction methods in nearly all domains of materials science and engineering has established a new, exciting, interdisciplinary approach which is often referred to as "computational materials science". It brings together elements from materials science, physics, computer science, mathematics, chemistry, and mechanical engineering. For instance, simu...

Tiller M. Introduction to Physical Modeling with Modelica

  • формат iso, djvu
  • размер 25.92 МБ
  • добавлен 14 октября 2011 г.
Springer, 2001, 368 pages, DJVU + CD The first book on Modelica, a modeling language that can be used to simulate both continuous and discrete behavior, Introduction to Physical Modeling with Modelica provides the necessary background to develop Modelica models of almost any physical system. The author starts with basic differential equations from several engineering domains and describes how these equations can be used to create reusable comp...

Wyld H.W. Mathematical Methods For Physics

  • формат pdf
  • размер 26.54 МБ
  • добавлен 29 января 2011 г.
Westview Press, 1999. - 651 pages. There are new methods of learning, new concepts to be tried, but the basic core of physics remains a constant in an ever-changing world. Mathematical Methods for Physics is the bridge that brings these two worlds together. With supplemental material such as graphs and equations, Mathematical Methods for Physics comes together to create a strong, solid anchor for first year students. Dr. H.W. Wyld has lectured o...