• формат pdf
  • размер 5.76 МБ
  • добавлен 23 декабря 2010 г.
Salsa S. Partial Differential Equations in Action: From Modelling to Theory
Springer, 2008. - 450 pages.

This book is designed as an advanced undergraduate or a first-year graduatecourse for students from various disciplines like applied mathematics,physics, engineering.
The main purpose is on the one hand to train the students to appreciate the interplay between theory and modelling in problems arising in the applied sciences; on the other hand to give them a solid theoretical background for numerical methods, such as finite elements.
Смотрите также

Copson E.T. Partial Differential Equations

  • формат djvu
  • размер 1.91 МБ
  • добавлен 10 декабря 2010 г.
Cambridge University Press, 1975. - 292 p. In this book, Professor Copson gives a rigorous account of the theory of partial differential equations of the first order and of linear partial differential equations of the second order, using the methods of classical analysis. In spite of the advent of computers and the applications of the methods of functional analysis to the theory of partial differential equations, the classical theory retains its...

Evans L.C. Partial Differential Equations

  • формат djvu
  • размер 4.67 МБ
  • добавлен 10 декабря 2010 г.
American Mathematical Society, 1998. - 662 pages. This text gives a comprehensive survey of modern techniques in the theoretical study of partial differential equations (PDEs) with particular emphasis on nonlinear equations. The exposition is divided into three parts: 1) representation formulas for solutions, 2) theory for linear partial differential equations, and 3) theory for nonlinear partial differential equations. Included are complete tr...

Freiling G., Yurko V. Lectures on Differential Equations of Mathematical Physics: A First Course

  • формат pdf
  • размер 5.12 МБ
  • добавлен 11 декабря 2010 г.
Nova Science Publishers, 2008. - 304 pages. The theory of partial differential equations of mathematical physics has been one of the most important fields of study in applied mathematics. This is essentially due to the frequent occurrence of partial differential equations in many branches of natural sciences and engineering. The present lecture notes have been written for the purpose of presenting an approach based mainly on the mathematical pro...

Gilbarg D., Trudinger N.S. Elliptic Partial Differential Equations of Second Order

  • формат djvu
  • размер 4.02 МБ
  • добавлен 29 августа 2011 г.
Sрringer, 1984. - 530 pages. This is a book of interest to any having to work with differential equations, either as a reference or as a book to learn from. The authors have taken trouble to make the treatment self-contained. It is suitable required reading for a PhD student. Although the material has been developed from lectures at Stanford, it has developed into an almost systematic coverage that is much longer than could be covered in a year'...

Jeffrey A. Applied Partial Differential Equations: An Introduction

  • формат pdf
  • размер 14.46 МБ
  • добавлен 31 марта 2011 г.
Academic Press, 2002. - 394 Pages. This book is written to meet the needs of undergraduates in applied mathematics, physics and engineering studying partial differential equations. Many books deal with partial differential equations, some at an elementary level and others at more advanced levels, so it is necessary that some justification should be given for the publication of another introductory text. With few exceptions, existing texts writt...

Jost J. Partial Differential Equations

  • формат pdf
  • размер 13.77 МБ
  • добавлен 10 декабря 2010 г.
Second Edition. Springer, 2007. - 356 pages. This book is intended for students who wish to get an introduction to the theory of partial differential equations. The author focuses on elliptic equations and systematically develops the relevant existence schemes, always with a view towards nonlinear problems. These are maximum principle methods (particularly important for numerical analysis schemes), parabolic equations, variational methods, and c...

Taylor M.E. Partial Differential Equations III: Nonlinear Equations

  • формат pdf
  • размер 3.72 МБ
  • добавлен 14 января 2011 г.
Springer, 2010. - 715 Pages. The third of three volumes on partial differential equations, this is devoted to nonlinear PDE. It treats a number of equations of classical continuum mechanics, including relativistic versions, as well as various equations arising in differential geometry, such as in the study of minimal surfaces, isometric imbedding, conformal deformation, harmonic maps, and prescribed Gauss curvature. In addition, some nonlinear d...

Taylor M.E. Partial Differential Equations: Basic Theory

  • формат djvu
  • размер 5.69 МБ
  • добавлен 09 января 2011 г.
Springer, 1999. - 563 pages. This text provides an introduction to the theory of partial differential equations. It introduces basic examples of partial differential equations, arising in continuum mechanics, electromagnetism, complex analysis and other areas, and develops a number of tools for their solution, including particularly Fourier analysis, distribution theory, and Sobolev spaces. These tools are applied to the treatment of basic probl...

Wloka J., Rowley B., Lawruk B. Boundary Value Problems for Elliptic Systems

  • формат djvu
  • размер 7.69 МБ
  • добавлен 29 октября 2011 г.
Cambridge University Press, 1995. - 658 pages. The theory of boundary value problems for elliptic systems of partial differential equations has many applications in mathematics and the physical sciences. The aim of this book is to "algebraize" the index theory by means of pseudo-differential operators and new methods in the spectral theory of matrix polynomials. This latter theory provides important tools that will enable the student to work ef...

Zachmanoglou E.C., Thoe D.W. Introduction to Partial Differential Equations with Applications

  • формат djvu
  • размер 4.56 МБ
  • добавлен 15 октября 2011 г.
Dover, 1987. - 432 pages. This introductory text explores the essentials of partial differential equations applied to common problems in engineering and the physical sciences. It reviews calculus and ordinary differential equations, explores integral curves and surfaces of vector fields, the Cauchy-Kovalevsky theory and more. Includes problems and answers.