Диссертация на соискание ученой степени кандидата технических наук.
М: МГУПС, 2010. — 134 с.
05.23.17 - Строительная механика
Научный руководитель: доктор технических наук, профессор Потапов В.Д. Цель диссертационной работы состоит в развитии метода конечных элементов как для линейно-упругих систем, так и систем упругопластических, включающих тонкостенные стержни открытого профиля. Практически значимой является задача разработки на основе стержневой модели алгоритмов и программного обеспечения расчета многоэлементных систем тонкостенных стержней с открытым профилем поперечного сечения на прочность, устойчивость и колебания по теории В.З. Власова. Также важной проблемой является разработка методики анализа такого рода систем, выполненных из упругопластического материала, с целью оценки степени развития в них пластических деформаций. Обоснованность и достоверность научных положений
Достоверность результатов, полученных в диссертации, обосновывается использованием известных алгоритмов численного решения задач механики твердого деформируемого тела и метода конечных элементов. Также в диссертации приводится сравнительный анализ решений многих задач, некоторые из которых имеют точное аналитическое решение. Решения задач упругопластического деформирования тонкостенного стержня сравниваются с результатами экспериментальных исследований. Научная новизна состоит в полученных алгоритмах решения задач прочности, устойчивости и колебаний систем с тонкостенными стержнями открытого профиля. Разработаны методика и алгоритмы построения матриц упругой жесткости конечного элемента тонкостенного стержня открытого профиля, при этом рассмотрены точная, приближенная и уточненная модели. Выбрана наиболее эффективная с точки зрения точности и вычислительных затрат уточненная модель. На ее основе предложен алгоритм построения матрицы геометрической жесткости применительно к случаю центрального и внецентренного сжатия или растяжения. Также получена матрица масс для решения задач колебаний. Для решения задач упругопластического деформирования тонкостенных стержней открытого профиля разработана методика и алгоритм итерационного поиска дополнительных нагрузок метода упругих решений.
05.23.17 - Строительная механика
Научный руководитель: доктор технических наук, профессор Потапов В.Д. Цель диссертационной работы состоит в развитии метода конечных элементов как для линейно-упругих систем, так и систем упругопластических, включающих тонкостенные стержни открытого профиля. Практически значимой является задача разработки на основе стержневой модели алгоритмов и программного обеспечения расчета многоэлементных систем тонкостенных стержней с открытым профилем поперечного сечения на прочность, устойчивость и колебания по теории В.З. Власова. Также важной проблемой является разработка методики анализа такого рода систем, выполненных из упругопластического материала, с целью оценки степени развития в них пластических деформаций. Обоснованность и достоверность научных положений
Достоверность результатов, полученных в диссертации, обосновывается использованием известных алгоритмов численного решения задач механики твердого деформируемого тела и метода конечных элементов. Также в диссертации приводится сравнительный анализ решений многих задач, некоторые из которых имеют точное аналитическое решение. Решения задач упругопластического деформирования тонкостенного стержня сравниваются с результатами экспериментальных исследований. Научная новизна состоит в полученных алгоритмах решения задач прочности, устойчивости и колебаний систем с тонкостенными стержнями открытого профиля. Разработаны методика и алгоритмы построения матриц упругой жесткости конечного элемента тонкостенного стержня открытого профиля, при этом рассмотрены точная, приближенная и уточненная модели. Выбрана наиболее эффективная с точки зрения точности и вычислительных затрат уточненная модель. На ее основе предложен алгоритм построения матрицы геометрической жесткости применительно к случаю центрального и внецентренного сжатия или растяжения. Также получена матрица масс для решения задач колебаний. Для решения задач упругопластического деформирования тонкостенных стержней открытого профиля разработана методика и алгоритм итерационного поиска дополнительных нагрузок метода упругих решений.