• формат pdf
  • размер 6.17 МБ
  • добавлен 11 декабря 2010 г.
Mattheij R.M. Partial Differential Equations: Modeling, Analysis, Computation
Society for Industrial & Applied Mathematics, 2005. - 665 Pages.

Partial differential equations (PDEs) are used to describe a large variety of physical phenomena, from fluid flow to electromagnetic fields, and are indispensable to such disparate fields as aircraft simulation and computer graphics. While most existing texts on PDEs deal with either analytical or numerical aspects of PDEs, this innovative and comprehensive textbook features a unique approach that integrates analysis and numerical solution methods and includes a third component-modeling-to address real-life problems. The authors believe that modeling can be leaed only by doing; hence a separate chapter containing 16 user-friendly case studies of elliptic, parabolic, and hyperbolic equations is included and numerous exercises are included in all other chapters. Partial Differential Equations: Modeling, Analysis, Computation enables readers to deepen their understanding of a topic ubiquitous in mathematics and science and to tackle practical problems. The advent of fast computers and the development of numerical methods have enabled the mode engineer to use a large variety of packages to find numerical approximations to solutions of PDEs. Problems are usually standard and a thorough knowledge of a well-chosen subset of analytical and numerical tools and methodologies is necessary when dealing with real-life problems. When one is dealing with PDEs in practice, it becomes clear that both numerical and analytical treatments of the problem are needed. This comprehensive book is intended for graduate students in applied mathematics, engineering, and physics and may be of interest to advanced undergraduate students. Mathematicians, scientists, and engineers also will find the book useful. Contents List of Figures; List of Tables; Notation; Preface; Chapter 1: Differential and difference equations; Chapter 2: Characterization and classification; Chapter 3: Fourier theory; Chapter 4: Distributions and fundamental solutions; Chapter 5: Approximation by finite differences; Chapter 6: The Equations of continuum mechanics and electromagnetics; Chapter 7: The art of modeling; Chapter 8: The analysis of elliptic equations; Chapter 9: Numerical methods for elliptic equations; Chapter 10: Analysis of parabolic equations; Chapter 11: Numerical methods for parabolic equations; Chapter 12: Analysis of hyperbolic equations; Chapter 13: Numerical methods for scalar hyperbolic equations; Chapter 14: Numerical methods for hyperbolic systems; Chapter 15: Perturbation methods; Chapter 16: Modeling, analyzing, and simulating problems from practice; Appendices: Useful definitions and properties; Bibliography.
Смотрите также

Cain G., Meyer G.H. Separation of Variables for Partial Differential Equations: An Eigenfunction Approach

  • формат pdf
  • размер 5.96 МБ
  • добавлен 29 апреля 2011 г.
CRC, 2005. - 304 Pages. Separation of Variables for Partial Differential Equations: An Eigenfunction Approach includes many realistic applications beyond the usual model problems. The book concentrates on the method of separation of variables for partial differential equations, which remains an integral part of the training in applied mathematics. The presentation includes, beyond the usual model problems, a number of realistic applications that...

Chen G.-Q., Di Benedetto E. (editors) Nonlinear Partial Differential Equations

Статья
  • формат djvu
  • размер 1.25 МБ
  • добавлен 31 декабря 2010 г.
This volume is a collection of refereed original research papers and expository articles and stems from the scientific program of the 1997-98 Nonlinear PDE Emphasis Year at Northwestern University, which was jointly sponsored by Northwestern University and the National Science Foundation. Most of the papers presented are from the distinguished mathematicians who spoke at the International Conference on Nonlinear Partial Differential Equations, Ma...

Christ M., Kenig C.E., Sadosky C. Harmonic Analysis and Partial Differential Equations: Essays in Honor of Alberto P. Calderon

  • формат pdf
  • размер 5.61 МБ
  • добавлен 25 августа 2011 г.
Univеrsity Of Chicаgo Prеss, 2001. - 360 pages. Alberto P. Calder?n (1920-1998) was one of this century's leading mathematical analysts. His contributions, characterized by great originality and depth, have changed the way researchers approach and think about everything from harmonic analysis to partial differential equations and from signal processing to tomography. In addition, he helped define the "Chicago school" of analysis, which remains i...

Copson E.T. Partial Differential Equations

  • формат djvu
  • размер 1.91 МБ
  • добавлен 10 декабря 2010 г.
Cambridge University Press, 1975. - 292 p. In this book, Professor Copson gives a rigorous account of the theory of partial differential equations of the first order and of linear partial differential equations of the second order, using the methods of classical analysis. In spite of the advent of computers and the applications of the methods of functional analysis to the theory of partial differential equations, the classical theory retains its...

Jeffrey A. Applied Partial Differential Equations: An Introduction

  • формат pdf
  • размер 14.46 МБ
  • добавлен 31 марта 2011 г.
Academic Press, 2002. - 394 Pages. This book is written to meet the needs of undergraduates in applied mathematics, physics and engineering studying partial differential equations. Many books deal with partial differential equations, some at an elementary level and others at more advanced levels, so it is necessary that some justification should be given for the publication of another introductory text. With few exceptions, existing texts writt...

Jost J. Partial Differential Equations

  • формат pdf
  • размер 13.77 МБ
  • добавлен 10 декабря 2010 г.
Second Edition. Springer, 2007. - 356 pages. This book is intended for students who wish to get an introduction to the theory of partial differential equations. The author focuses on elliptic equations and systematically develops the relevant existence schemes, always with a view towards nonlinear problems. These are maximum principle methods (particularly important for numerical analysis schemes), parabolic equations, variational methods, and c...

Logan J.D. Applied Partial Differential Equations

  • формат djvu
  • размер 4.55 МБ
  • добавлен 31 августа 2011 г.
Springer, 2004. - 224 pages. From the reviews of the second edition: "This second edition of the short undergraduate text provides a fist course in PDE aimed at students in mathematics, engineering and the sciences. The material is standard … . Strong emphasis is put on modeling and applications throughout; the main text is supplied with many examples and exercises." (R. Steinbauer, Monatshefte f?r Mathematik, Vol. 150 (4), 2007) "This book c...

Sonnendrucker E. (editor) Three Courses on Partial Differential Equations

  • формат pdf
  • размер 1.1 МБ
  • добавлен 03 февраля 2011 г.
Walter de Gruyter, 2003. - 162 pages. Modeling, in particular with partial differential equations, plays an ever growing role in the applied sciences. Hence its mathematical understanding is an important issue for today's research. This book provides an introduction to three different topics in partial differential equations arising from applications. The subject of the first course by Michel Chipot is equilibrium positions of several disks rol...

Taylor M.E. Partial Differential Equations III: Nonlinear Equations

  • формат pdf
  • размер 3.72 МБ
  • добавлен 14 января 2011 г.
Springer, 2010. - 715 Pages. The third of three volumes on partial differential equations, this is devoted to nonlinear PDE. It treats a number of equations of classical continuum mechanics, including relativistic versions, as well as various equations arising in differential geometry, such as in the study of minimal surfaces, isometric imbedding, conformal deformation, harmonic maps, and prescribed Gauss curvature. In addition, some nonlinear d...

Taylor M.E. Partial Differential Equations: Basic Theory

  • формат djvu
  • размер 5.69 МБ
  • добавлен 09 января 2011 г.
Springer, 1999. - 563 pages. This text provides an introduction to the theory of partial differential equations. It introduces basic examples of partial differential equations, arising in continuum mechanics, electromagnetism, complex analysis and other areas, and develops a number of tools for their solution, including particularly Fourier analysis, distribution theory, and Sobolev spaces. These tools are applied to the treatment of basic probl...