Издательство John Wiley, 2005, -290 pp.
This book provides a systematic approach to the problems involved in the application of error-correcting codes in data networks.
Over the last two decades the importance of coding theory has become apparent. Thirty years ago developers of communication systems considered error-correcting coding to be somewhat exotic. It was considered as an area of interest only for mathematical engineers or mathematicians involved in the problems of engineering. Today however, theory is an important part of any textbook on communications, and the results of coding theory have become standards in data communication. The increasing demand for communications quality and the progress in information technologies has led to the implementation of error-correcting procedures in practice and an expansion in the area of error-correcting codes applications.
Following the growth of coding theory in practice the number of publications on coding theory and its applications has also increased. However, most of these books are conceed with the problem of coding of physical or data-link network layers, which are the traditional application of error-control codes.
There are several classes of errors that are inherent in the process of information transfer over networks. One of these classes is formed by normal errors originating in communication links, and other classes are formed by special distortions, connected to the organisation of the network. However, in mode data networks the error-correcting (or controlling) codes are used only as a means of increasing the reliability of information during data transmission over different channels – no correlation between coding and other network procedures is considered. There is also a lack of research on the capability of codes to improve the operation of the network as a whole. Recently a number of non-traditional directions have appeared for applying coding at network layers higher than the data-link layer. In particular, the authors of this book have succeeded in showing the effectiveness of using error-correcting codes for reducing the delivery time of the message and increasing the reliability of the message itself. The desire to demonstrate these possibilities was the first reason for writing this book. However, during the preparation of the book it became clear that we had collected enough examples of using error-correcting codes at application and presentation layers of networks (coding for image compression and code-based cryptosystems for example) to enable us to apply the results of coding theory to all network layers.
The basic concept considers the data network as some superchannel (consisting of several layers of the network). This concept allows us to solve the problems of errorcorrecting coding in a data network as a whole. As most errors depend on protocols used at the corresponding network layer, the suggested ‘global’ approach to coding in a network is connected with other network procedures, and this fact determines the complexity and originality of coding problems in a network. Surprisingly, results indicate that coding in a network helps not only to increase the reliability of the transmitted information, but can also be used to improve such important characteristics of a network as the mean message delay. We may also consider the encryption of messages just as a coding process at the presentation layer in a network. We can therefore distinguish different coding processes in different network layers and so it is necessary to consider the impact of coding in one layer on another layer. Thus, the problem of reconciliation of coding in different network layers arises. In this book we set out some solutions to this problem.
The importance of solving this problem and our perspectives on the possible solutions were especially emphasised by the reviewers of this book. We are very grateful for their helpful comments. It is the attempt to consider the problems of coding at higher network layers which, in our opinion, is the distinguishing feature of this book. The theoretical material is accompanied by concrete recommendations for the use of codes in data networks and by calculations of the benefits that can be obtained with the help of error-correcting coding. The organisation of the book (from the problems to the theory and from the theory to the problems, and the relative independence of chapters from each other) is chosen in such a way as to facilitate reading for engineers who would like to familiarise themselves with new approaches to the use of error-correcting codes in data networks. Since a significant part of the material is new or is not reflected in the literature, we hope that this book will be of interest to readers from different disciplines who are interested in issues of data communication and applications of coding theory.
The book is organised as follows. Chapter 1 introduces the problems of coding is different network layers. Chapter 2 presents the main algebraic structures used in coding theory and one of the most studied class of codes: linear block codes. Chapter 3 covers the different methods of linear codes decoding and introduces some new results obtained by authors in this field. Chapter 4 describes the very widely used codes: Hamming codes, BCH codes, and Reed-Solomon codes. The decoding of these helps to demonstrate very important and comprehensive results of coding theory. Chapter 5 introduces the problems of LDPC codes decoding. Chapter 6 presents another very widely-used class of codes: convolutional codes and turbo codes, and covers some problems of iterative decoding. Chapter 7 is devoted to the new area of application of error-correcting codes: transport coding. In this chapter the possibility of using errorcorrecting codes to control such important data characteristics as mean message delay is demonstrated. Chapter 8 covers coding methods used in cryptography. Chapter 9 analyses the problems of reconciliation of coding in different network layers. In this chapter some solutions based on the superchannel approach are considered. Additional research results including some new constructions of LDPC codes, joint error-control coding and synchronization, Reed-Muller codes and their list decoding can be obtained from the book’s companion website at ftp://ftp.wiley.co.uk/pub/books/kabatiansky.
The problem of error control coding in data networks is very wide and not yet fully defined today so the authors do not claim to provide a full solution of the problem but are hoping that this book can become a first step to further research in the field.
Problems Facing Error Control Coding in Data Networks
Block Codes
General Methods of Decoding of Linear Codes
Codes with Algebraic Decoding
Decoding of LDPC Codes
Convolutional Codes and Turbo-Codes.
Coding of Messages at the Transport Layer of the Data Network
Providing Security of Data in a Network with the Help of Coding Methods
Reconciliation of Coding at Different Layers of a Network
This book provides a systematic approach to the problems involved in the application of error-correcting codes in data networks.
Over the last two decades the importance of coding theory has become apparent. Thirty years ago developers of communication systems considered error-correcting coding to be somewhat exotic. It was considered as an area of interest only for mathematical engineers or mathematicians involved in the problems of engineering. Today however, theory is an important part of any textbook on communications, and the results of coding theory have become standards in data communication. The increasing demand for communications quality and the progress in information technologies has led to the implementation of error-correcting procedures in practice and an expansion in the area of error-correcting codes applications.
Following the growth of coding theory in practice the number of publications on coding theory and its applications has also increased. However, most of these books are conceed with the problem of coding of physical or data-link network layers, which are the traditional application of error-control codes.
There are several classes of errors that are inherent in the process of information transfer over networks. One of these classes is formed by normal errors originating in communication links, and other classes are formed by special distortions, connected to the organisation of the network. However, in mode data networks the error-correcting (or controlling) codes are used only as a means of increasing the reliability of information during data transmission over different channels – no correlation between coding and other network procedures is considered. There is also a lack of research on the capability of codes to improve the operation of the network as a whole. Recently a number of non-traditional directions have appeared for applying coding at network layers higher than the data-link layer. In particular, the authors of this book have succeeded in showing the effectiveness of using error-correcting codes for reducing the delivery time of the message and increasing the reliability of the message itself. The desire to demonstrate these possibilities was the first reason for writing this book. However, during the preparation of the book it became clear that we had collected enough examples of using error-correcting codes at application and presentation layers of networks (coding for image compression and code-based cryptosystems for example) to enable us to apply the results of coding theory to all network layers.
The basic concept considers the data network as some superchannel (consisting of several layers of the network). This concept allows us to solve the problems of errorcorrecting coding in a data network as a whole. As most errors depend on protocols used at the corresponding network layer, the suggested ‘global’ approach to coding in a network is connected with other network procedures, and this fact determines the complexity and originality of coding problems in a network. Surprisingly, results indicate that coding in a network helps not only to increase the reliability of the transmitted information, but can also be used to improve such important characteristics of a network as the mean message delay. We may also consider the encryption of messages just as a coding process at the presentation layer in a network. We can therefore distinguish different coding processes in different network layers and so it is necessary to consider the impact of coding in one layer on another layer. Thus, the problem of reconciliation of coding in different network layers arises. In this book we set out some solutions to this problem.
The importance of solving this problem and our perspectives on the possible solutions were especially emphasised by the reviewers of this book. We are very grateful for their helpful comments. It is the attempt to consider the problems of coding at higher network layers which, in our opinion, is the distinguishing feature of this book. The theoretical material is accompanied by concrete recommendations for the use of codes in data networks and by calculations of the benefits that can be obtained with the help of error-correcting coding. The organisation of the book (from the problems to the theory and from the theory to the problems, and the relative independence of chapters from each other) is chosen in such a way as to facilitate reading for engineers who would like to familiarise themselves with new approaches to the use of error-correcting codes in data networks. Since a significant part of the material is new or is not reflected in the literature, we hope that this book will be of interest to readers from different disciplines who are interested in issues of data communication and applications of coding theory.
The book is organised as follows. Chapter 1 introduces the problems of coding is different network layers. Chapter 2 presents the main algebraic structures used in coding theory and one of the most studied class of codes: linear block codes. Chapter 3 covers the different methods of linear codes decoding and introduces some new results obtained by authors in this field. Chapter 4 describes the very widely used codes: Hamming codes, BCH codes, and Reed-Solomon codes. The decoding of these helps to demonstrate very important and comprehensive results of coding theory. Chapter 5 introduces the problems of LDPC codes decoding. Chapter 6 presents another very widely-used class of codes: convolutional codes and turbo codes, and covers some problems of iterative decoding. Chapter 7 is devoted to the new area of application of error-correcting codes: transport coding. In this chapter the possibility of using errorcorrecting codes to control such important data characteristics as mean message delay is demonstrated. Chapter 8 covers coding methods used in cryptography. Chapter 9 analyses the problems of reconciliation of coding in different network layers. In this chapter some solutions based on the superchannel approach are considered. Additional research results including some new constructions of LDPC codes, joint error-control coding and synchronization, Reed-Muller codes and their list decoding can be obtained from the book’s companion website at ftp://ftp.wiley.co.uk/pub/books/kabatiansky.
The problem of error control coding in data networks is very wide and not yet fully defined today so the authors do not claim to provide a full solution of the problem but are hoping that this book can become a first step to further research in the field.
Problems Facing Error Control Coding in Data Networks
Block Codes
General Methods of Decoding of Linear Codes
Codes with Algebraic Decoding
Decoding of LDPC Codes
Convolutional Codes and Turbo-Codes.
Coding of Messages at the Transport Layer of the Data Network
Providing Security of Data in a Network with the Help of Coding Methods
Reconciliation of Coding at Different Layers of a Network