Пособие для учителей. — М.: Просвещение, 1976. — 48 с.: ил.
Одними из фундаментальных понятий современной математики являются
вектор и его обобщение — тензор. Вектор — чисто математическое
понятие, которое применяется в физике или других прикладных науках
и которое позволяет упростить решение некоторых сложных задач этих
наук.
Одним из ведущих понятий современной математики является понятие векторного пространства. Оно имеет широкие приложения в математике, в таких ее разделах, как «Линейная алгебра», «Линейное программирование», «Функциональный анализ» и т. д., а также во многих разделах физики. В рамках теории трехмерного векторного пространства может быть построен курс стереометрии, отличающийся от традиционного курса евклидовой геометрии большим изяществом и компактностью (хотя и менее наглядный и менее доступный для первоначального изучения). В данной брошюре мы рассмотрим несколько подходов к трактовке понятия вектора, включая и трактовку вектора как параллельного переноса на множестве точек плоскости или пространства. Так как последняя трактовка характерна для современного школьного курса геометрии, мы, естественно, возьмем ее за основу в последующем изложении.
Одним из ведущих понятий современной математики является понятие векторного пространства. Оно имеет широкие приложения в математике, в таких ее разделах, как «Линейная алгебра», «Линейное программирование», «Функциональный анализ» и т. д., а также во многих разделах физики. В рамках теории трехмерного векторного пространства может быть построен курс стереометрии, отличающийся от традиционного курса евклидовой геометрии большим изяществом и компактностью (хотя и менее наглядный и менее доступный для первоначального изучения). В данной брошюре мы рассмотрим несколько подходов к трактовке понятия вектора, включая и трактовку вектора как параллельного переноса на множестве точек плоскости или пространства. Так как последняя трактовка характерна для современного школьного курса геометрии, мы, естественно, возьмем ее за основу в последующем изложении.