Материалы Международной школы-семинара для старшекурсников,
аспирантов физико-математических факультетов и молодых ученых.
Москва, 12 июля – 14 августа, 2010 г. Г. И. Гарасько, С. С.
Кокарев, В. Н. Тришин, В. Балан, Н. Бринзей, С. В. Сипаров, В. М.
Чернов, В. А. Панчелюга / Под общ. ред. Г. Ю. Богословского, В. О.
Гладышева, Д. Г. Павлова. – М.: МГТУ им. Н. Э. Баумана, 2010. – 412
с.
Данный сборник является подробным конспектом основных курсов лекций, читавшихся слушателям международных школ по основам финслеровой геометрии в 2008-2009 гг., организованных Международным фондом развития исследований в области финслеровой геометрии и НИИ гиперкомплексных систем в геометрии и физике при поддержке научно-учебного комплекса «Фундаментальные науки» МГТУ им. Н. Э. Баумана. Публикуемые материалы также составляют основу для работы IV-й Международной школы "Основы финслеровой геометрии" в 2010 году.
В сборник вошли лекции по основам финслеровой геометрии, элементам геометрии гладких многообразий, основам дифференциальной геометрии и группам Ли, псевдо-финслеровой геометрии, элементам комплексного анализа, современным проблемам ОТО, обобщенным n-арным законам композиции в алгебре и их связь с ассоциированными метрическими формами, а также по экспериментальным исследованиям неоднородности и анизотропности пространства-времени.
Для студентов, аспирантов и молодых специалистов, имеющих физико-математическое образование.
Данный сборник является подробным конспектом основных курсов лекций, читавшихся слушателям международных школ по основам финслеровой геометрии в 2008-2009 гг., организованных Международным фондом развития исследований в области финслеровой геометрии и НИИ гиперкомплексных систем в геометрии и физике при поддержке научно-учебного комплекса «Фундаментальные науки» МГТУ им. Н. Э. Баумана. Публикуемые материалы также составляют основу для работы IV-й Международной школы "Основы финслеровой геометрии" в 2010 году.
В сборник вошли лекции по основам финслеровой геометрии, элементам геометрии гладких многообразий, основам дифференциальной геометрии и группам Ли, псевдо-финслеровой геометрии, элементам комплексного анализа, современным проблемам ОТО, обобщенным n-арным законам композиции в алгебре и их связь с ассоциированными метрическими формами, а также по экспериментальным исследованиям неоднородности и анизотропности пространства-времени.
Для студентов, аспирантов и молодых специалистов, имеющих физико-математическое образование.