8-е издание. - М.: ФИЗМАТЛИТ, 2003. - 680 с., 864 с., 728 с.
В данном издании устранены все замеченные опечатки, имеются комментарии и примечания редактора. Том 1
Фундаментальный учебник по математическому анализу, выдержавший множество изданий и переведенный на ряд иностранных языков, отличается, с одной стороны, систематичностью и строгостью изложения, а с другой — простым языком, подробными пояснениями и многочисленными примерами, иллюстрирующими теорию.
«Курс. » предназначен для студентов университетов, педагогических и технических вузов и уже в течение длительного времени используется в различных учебных заведениях в качестве одного из основных учебных пособий. Он позволяет учащемуся не только овладеть теоретическим материалом, но и получить наиболее важные практические навыки. «Курс. » высоко ценится математиками как уникальная коллекция различных фактов анализа, часть которых невозможно найти в других книгах на русском языке. Том 2
Второй том «Курса.» посвящен теории интеграла от функции одной вещественной переменной и теории рядов и предназначен, прежде всего, для студентов первых двух курсов негуманитарных вузов. Исключительно подробное, полное и снабженное многочисленными примерами изложение включает такие классические разделы анализа, как неопределенный интеграл и методы его вычисления, определенный интеграл Римана, несобственный интеграл, числовые и функциональные ряды, интегралы, зависящие от параметра, и др. Подробно излагаются и некоторые мало представленные или совсем не представленные в элементарных учебниках темы: бесконечные произведения, формула суммирования Эйлера-Маклорена и ее приложения, асимптотические разложения, теория суммирования и приближенные вычисления с помощью расходящихся рядов и др. Являясь одним из лучших систематических учебников по интегральному исчислению и, одновременно, уникальной коллекцией конкретных фактов, связанных с рядами и интегралами, данная книга, безусловно, будет полезна как учащимся, так и преподавателям высшей математики, а также специалистам различных профилей, использующим математику в своей работе, в том числе, математикам, физикам и инженерам. Том 3
Третий, заключительный том содержит подробное изложение таких разделов дифференциального и интегрального исчисления, как теория кратных, криволинейных и поверхностных интегралов, элементы векторного анализа, теория функций ограниченной вариации и интеграл Стилтьеса, ряды и интегралы Фурье. Использование простого геометрического языка значительно облегчает восприятие текста; вместе с тем многие сложные теоретические вопросы изложены полнее, чем в любом другом учебном издании. Особое внимание уделено приложениям общей теории: большое количество конкретных формул и фактов, примеров и задач как чисто математического, так и прикладного характера превращает «Курс. » в уникальное учебное пособие, полезное студентам негуманитарных вузов, которым оно непосредственно предназначено, а также математикам, физикам, инженерам и другим специалистам, использующим математику в своей работе.
В данном издании устранены все замеченные опечатки, имеются комментарии и примечания редактора. Том 1
Фундаментальный учебник по математическому анализу, выдержавший множество изданий и переведенный на ряд иностранных языков, отличается, с одной стороны, систематичностью и строгостью изложения, а с другой — простым языком, подробными пояснениями и многочисленными примерами, иллюстрирующими теорию.
«Курс. » предназначен для студентов университетов, педагогических и технических вузов и уже в течение длительного времени используется в различных учебных заведениях в качестве одного из основных учебных пособий. Он позволяет учащемуся не только овладеть теоретическим материалом, но и получить наиболее важные практические навыки. «Курс. » высоко ценится математиками как уникальная коллекция различных фактов анализа, часть которых невозможно найти в других книгах на русском языке. Том 2
Второй том «Курса.» посвящен теории интеграла от функции одной вещественной переменной и теории рядов и предназначен, прежде всего, для студентов первых двух курсов негуманитарных вузов. Исключительно подробное, полное и снабженное многочисленными примерами изложение включает такие классические разделы анализа, как неопределенный интеграл и методы его вычисления, определенный интеграл Римана, несобственный интеграл, числовые и функциональные ряды, интегралы, зависящие от параметра, и др. Подробно излагаются и некоторые мало представленные или совсем не представленные в элементарных учебниках темы: бесконечные произведения, формула суммирования Эйлера-Маклорена и ее приложения, асимптотические разложения, теория суммирования и приближенные вычисления с помощью расходящихся рядов и др. Являясь одним из лучших систематических учебников по интегральному исчислению и, одновременно, уникальной коллекцией конкретных фактов, связанных с рядами и интегралами, данная книга, безусловно, будет полезна как учащимся, так и преподавателям высшей математики, а также специалистам различных профилей, использующим математику в своей работе, в том числе, математикам, физикам и инженерам. Том 3
Третий, заключительный том содержит подробное изложение таких разделов дифференциального и интегрального исчисления, как теория кратных, криволинейных и поверхностных интегралов, элементы векторного анализа, теория функций ограниченной вариации и интеграл Стилтьеса, ряды и интегралы Фурье. Использование простого геометрического языка значительно облегчает восприятие текста; вместе с тем многие сложные теоретические вопросы изложены полнее, чем в любом другом учебном издании. Особое внимание уделено приложениям общей теории: большое количество конкретных формул и фактов, примеров и задач как чисто математического, так и прикладного характера превращает «Курс. » в уникальное учебное пособие, полезное студентам негуманитарных вузов, которым оно непосредственно предназначено, а также математикам, физикам, инженерам и другим специалистам, использующим математику в своей работе.