Издательство Addison-Wesley, 1964, под ред. Ричарда Фейнмана,
Роберта Лейтона, Матх Сандс, 327 с. , OCR, с иллюстрациями.
Feynman Richard. The Feynman Lectures on physics. Volume 3 "Quantum mechanics". Addison-Wesley Publishing Company Inc. 1964. Edited by Richard P. Feynman, Robert B. Leighton, Matthew Sands. 327 p. OCR. Illustrated.
These are the lectures in physics that Feynman gave in 1962 and 1961 to the freshman and sophomore classes at Caltech. The lectures are, of course, not verbatim—they have been edited, sometimes extensively and sometimes less so. The lectures form only part of the complete course. The whole group of 180 students gathered in a big lecture room twice a week to hear these lectures and then they broke up into small groups of 15 to 20 students in recitation sections under the guidance of a teaching assistant. In addition, there was a laboratory session once a week.
Это лекции по физике, которые Фейнман читал в 1962 и 1961 году студентам первого и второго курса в университете Калтеч. Лекции, конечно, не сохранились в исходном виде - они были отредактированы, иногда заметно и иногда менее. Лекции являются только частью полного курса. Все сто восемдесят студентов собирались в большом лекционном зале дважды в неделю слушать эти лекции и затем собирались маленькими группами по пятнадцать или двадцать студентов для повторения пройденного под руководством помощника учителя. Также проводились лабораторные раз в неделю.
Оглавление:
Quantum Behavior
- Atomic mechanics
- An experiment with bullets
- An experiment with waves
- An experiment with electrons
- The interference of electron waves
- Watching the electrons
- First principles of quantum mechanics
- The uncertainty principle
The Relation of Wave and Particle Viewpoints
- Probability wave amplitudes
- Measurement of position and momentum
- Crystal diffraction
- The size of an atom
- Energy levels
- Philosophical implications
Probability Amplitudes
- The laws of combining amplitudes
- The two-slit interference patte
- Scattering from a crystal
- Identical particles
Identical Particles
- Bose particles and Fermi particles
- States with two Bose particles
- States with n Bose particles
- Emission and absorption of photons
- The blackbody spectrum
- Liquid helium
- The exclusion principle
Spin One
- Filtering atoms with a Ste-Gerlach apparatus
- Experiments with filtered atoms
- Ste-Gerlach filters in series
- Base states
- Interfering amplitudes
- The machinery of quantum mechanics
- Transforming to a different base
- Other situations
Spin One-Half
- Transforming amplitudes
- Transforming to a rotated coordinate system
- Rotations about the z-axis
- Rotations of 180° and 90° about y
- Rotations about x
- Arbitrary rotations
The Dependence of Amplitudes on Time
- Atoms at rest; stationary states
- Uniform motion
- Potential energy; energy conservation
- Forces; the classical limit
- The "precession" of a spin one-half particle
The Hamiltonian Matrix
- Amplitudes and vectors
- Resolving state vectors
- What are the base states of the world?
- How states change with time
- The Hamiltonian matrix
- The ammonia molecule
The Ammonia Maser
- The states of an ammonia molecule
- The molecule in a static electric field
- Transitions in a time-dependent field
- Transitions at resonance
- Transitions off resonance
- The absorption of light
Other Two-State Systems
- The hydrogen molecular ion
- Nuclear forces
- The hydrogen molecule
- The benzene molecule
- Dyes
- The Hamiltonian of a spin one-half particle in magnetic field
- The spinning electron in a magnetic field
More Two-State Systems
- The Pauli spin matrices
- The spin matrices as operators
- The solution of the two-state equations
- The polarization states of the photon
- The neutral K-meson
- Generalization to TV-state systems
The Hyperfine Splitting in Hydrogen
- Base states for a system with two spin one-half particles
- The Hamiltonian for the ground state of hydrogen
- The energy levels
- The Zeeman splitting
- The states in a magnetic field
- The projection matrix for spin one
Propagation in a Crystal Lattice
- States for an electron in a one-dimensional lattice
- States of definite energy
- Time-dependent states
- An electron in a three-dimensional lattice
- Other states in a lattice
- Scattering by imperfections in the lattice
- Trapping by a lattice imperfection
- Scattering amplitudes and bound states
Semiconductors
- Electrons and holes in semiconductors
- Impure semiconductors
- The Hall effect
- Semiconductor junctions
- Rectification at a semiconductor junction
- The transistor
The Independent Particle Approximation
- Spin waves
- Two spin waves
- Independent particles
- The benzene molecule
- More organic chemistry
- Other uses of the approximation
The Dependincy of Amplitudes on Position
- Amplitudes on a line
- The wave function
- States of definite momentum
- Normalization of the states in x
- The Schrodinger equation
- Quantized energy levels
Symmetry and Conservation Laws
- Symmetry
- Symmetry and conservation
- The conservation laws
- Polarized light
- The disintegration of the A°
- Summary of the rotation matrices
Angular Momentum
- Electric dipole radiation
- Light scattering
- The annihilation of positronium
- Rotation matrix for any spin
- Measuring a nuclear spin
- Composition of angular momentum
- - Added Note : Derivation of the rotation matrix
- - Added Note : Conservation of parity in photon emission
The Hydrogen Atom and The Periodic Table
- Schrodinger's equation for the hydrogen atom
- Spherically symmetric solutions
- States with an angular dependence
- The general solution for hydrogen
- The hydrogen wave functions
- The periodic table
Operators
- Operations and operators
- Average energies
- The average energy of an atom
- The position operator
- The momentum operator
- Angular momentum
- The change of averages with time
The Schrodinger Equation in a Classical
- - - - - Context: A Seminar on Superconductivity
- Schrodinger's equation in a magnetic field
- The equation of continuity for probabilities
- Two kinds of momentum
- The meaning of the wave function
- Superconductivity
- The Meissner effect
- Flux quantization
- The dynamics of superconductivity
- The Josephson junction
Feynman's Epilogue
Appendix
Index
дополнительные сведения
1. В основном механика, излучение и тепло.
2. В основном электромагнетизм и вещество.
3. Квантовая механика.
OCR - текст распознанный, возможен полнотекстовый поиск.
Feynman Richard. The Feynman Lectures on physics. Volume 3 "Quantum mechanics". Addison-Wesley Publishing Company Inc. 1964. Edited by Richard P. Feynman, Robert B. Leighton, Matthew Sands. 327 p. OCR. Illustrated.
These are the lectures in physics that Feynman gave in 1962 and 1961 to the freshman and sophomore classes at Caltech. The lectures are, of course, not verbatim—they have been edited, sometimes extensively and sometimes less so. The lectures form only part of the complete course. The whole group of 180 students gathered in a big lecture room twice a week to hear these lectures and then they broke up into small groups of 15 to 20 students in recitation sections under the guidance of a teaching assistant. In addition, there was a laboratory session once a week.
Это лекции по физике, которые Фейнман читал в 1962 и 1961 году студентам первого и второго курса в университете Калтеч. Лекции, конечно, не сохранились в исходном виде - они были отредактированы, иногда заметно и иногда менее. Лекции являются только частью полного курса. Все сто восемдесят студентов собирались в большом лекционном зале дважды в неделю слушать эти лекции и затем собирались маленькими группами по пятнадцать или двадцать студентов для повторения пройденного под руководством помощника учителя. Также проводились лабораторные раз в неделю.
Оглавление:
Quantum Behavior
- Atomic mechanics
- An experiment with bullets
- An experiment with waves
- An experiment with electrons
- The interference of electron waves
- Watching the electrons
- First principles of quantum mechanics
- The uncertainty principle
The Relation of Wave and Particle Viewpoints
- Probability wave amplitudes
- Measurement of position and momentum
- Crystal diffraction
- The size of an atom
- Energy levels
- Philosophical implications
Probability Amplitudes
- The laws of combining amplitudes
- The two-slit interference patte
- Scattering from a crystal
- Identical particles
Identical Particles
- Bose particles and Fermi particles
- States with two Bose particles
- States with n Bose particles
- Emission and absorption of photons
- The blackbody spectrum
- Liquid helium
- The exclusion principle
Spin One
- Filtering atoms with a Ste-Gerlach apparatus
- Experiments with filtered atoms
- Ste-Gerlach filters in series
- Base states
- Interfering amplitudes
- The machinery of quantum mechanics
- Transforming to a different base
- Other situations
Spin One-Half
- Transforming amplitudes
- Transforming to a rotated coordinate system
- Rotations about the z-axis
- Rotations of 180° and 90° about y
- Rotations about x
- Arbitrary rotations
The Dependence of Amplitudes on Time
- Atoms at rest; stationary states
- Uniform motion
- Potential energy; energy conservation
- Forces; the classical limit
- The "precession" of a spin one-half particle
The Hamiltonian Matrix
- Amplitudes and vectors
- Resolving state vectors
- What are the base states of the world?
- How states change with time
- The Hamiltonian matrix
- The ammonia molecule
The Ammonia Maser
- The states of an ammonia molecule
- The molecule in a static electric field
- Transitions in a time-dependent field
- Transitions at resonance
- Transitions off resonance
- The absorption of light
Other Two-State Systems
- The hydrogen molecular ion
- Nuclear forces
- The hydrogen molecule
- The benzene molecule
- Dyes
- The Hamiltonian of a spin one-half particle in magnetic field
- The spinning electron in a magnetic field
More Two-State Systems
- The Pauli spin matrices
- The spin matrices as operators
- The solution of the two-state equations
- The polarization states of the photon
- The neutral K-meson
- Generalization to TV-state systems
The Hyperfine Splitting in Hydrogen
- Base states for a system with two spin one-half particles
- The Hamiltonian for the ground state of hydrogen
- The energy levels
- The Zeeman splitting
- The states in a magnetic field
- The projection matrix for spin one
Propagation in a Crystal Lattice
- States for an electron in a one-dimensional lattice
- States of definite energy
- Time-dependent states
- An electron in a three-dimensional lattice
- Other states in a lattice
- Scattering by imperfections in the lattice
- Trapping by a lattice imperfection
- Scattering amplitudes and bound states
Semiconductors
- Electrons and holes in semiconductors
- Impure semiconductors
- The Hall effect
- Semiconductor junctions
- Rectification at a semiconductor junction
- The transistor
The Independent Particle Approximation
- Spin waves
- Two spin waves
- Independent particles
- The benzene molecule
- More organic chemistry
- Other uses of the approximation
The Dependincy of Amplitudes on Position
- Amplitudes on a line
- The wave function
- States of definite momentum
- Normalization of the states in x
- The Schrodinger equation
- Quantized energy levels
Symmetry and Conservation Laws
- Symmetry
- Symmetry and conservation
- The conservation laws
- Polarized light
- The disintegration of the A°
- Summary of the rotation matrices
Angular Momentum
- Electric dipole radiation
- Light scattering
- The annihilation of positronium
- Rotation matrix for any spin
- Measuring a nuclear spin
- Composition of angular momentum
- - Added Note : Derivation of the rotation matrix
- - Added Note : Conservation of parity in photon emission
The Hydrogen Atom and The Periodic Table
- Schrodinger's equation for the hydrogen atom
- Spherically symmetric solutions
- States with an angular dependence
- The general solution for hydrogen
- The hydrogen wave functions
- The periodic table
Operators
- Operations and operators
- Average energies
- The average energy of an atom
- The position operator
- The momentum operator
- Angular momentum
- The change of averages with time
The Schrodinger Equation in a Classical
- - - - - Context: A Seminar on Superconductivity
- Schrodinger's equation in a magnetic field
- The equation of continuity for probabilities
- Two kinds of momentum
- The meaning of the wave function
- Superconductivity
- The Meissner effect
- Flux quantization
- The dynamics of superconductivity
- The Josephson junction
Feynman's Epilogue
Appendix
Index
дополнительные сведения
1. В основном механика, излучение и тепло.
2. В основном электромагнетизм и вещество.
3. Квантовая механика.
OCR - текст распознанный, возможен полнотекстовый поиск.