Автореферат диссертации на соискание ученой степени доктора
технических наук: 05.16.01 – Металловедение и термическая обработка
металлов. — Тульский государственный университет. — Тула, 2008. —
76 с.
Научный консультант: доктор технических наук, профессор Головин
С.А.
Целью настоящей работы является установление
влияния структуры конструкционных сталей на масштаб локальной
циклической деформации, приводящей к зарождению и развитию
усталостных трещин, и путей повышения перегрузочной способности
конструкций в условиях ограниченной и сверхвысокой
долговечности.
Научная новизна полученных результатов состоит в следующем:
Для сталей с различной структурной неоднородностью, включающих феррито-перлитные с мягкой матрицей и твердыми составляющими, аустенито-мартенситные с твердой матрицей и пластичными прослойками, а также мартенситные с жесткими структурами, получены регрессионные кривые усталости в широком диапазоне амплитуд напряжений устанавливающие зависимости числа циклов до образования трещин и до разрушения от масштабов циклических пластических деформаций и степени гетерогенности структур.
Установлены: монотонный характер роста пластической слабодеформированной макрозоны в феррито-перлитных малоуглеродистых сталях в условиях асимметричных циклов и плосконапряженного состояния, сопровождающийся утяжкой поперечного сечения, и негомогенный характер упрочнения сильнодеформированной микрозоны у вершины продвигающейся трещины.
Механизмом формирования пластической микрозоны в аустенито-мартенситных сталях является образование ориентированного мартенсита деформации перед вершиной растущей трещины в условиях плоскодеформированного состояния.
Механизмы зарождения и развития трещин в стали аустенито-мартенситного класса на сверхвысокой базе (>·10 8 циклов) проявляются в двух формах: посредством развития микропластических деформаций на включениях и слиянием пор на мартенситных субграницах.
Получены кинетические зависимости скорости роста трещин в областях 5·10-10…10-8 м/цикл. в аустенито-мартенситных и 10-8…10-4 м/цикл. в мартенситных высокопрочных сталях от амплитуд коэффициента интенсивности напряжений для нагружений. Определены показатели живучести высокопрочных сталей с трещиной в зоне многоцикловой усталости. Оба диапазона изменения скорости роста трещин описываются зависимостями одного типа и соответствуют стабильному участку кинетической диаграммы усталостного разрушения.
Предложена обобщенная кривая усталости, на которой выделены критические напряжения, отвечающие сменам механизмов зарождения и развития трещин, определяемым в зависимости от масштаба циклической пластической деформации, структурного и напряженного состояний сталей (феррито-перлитных, мартенситных и аустенито-мартенситных).
Установлено, что при средних перегрузках наибольшей долговечностью обладают азотосодержащие аустенито-мартенситные стали (для стали 08Х14АН4МДБ закалка от 1050 °С с отпуском при 400 °С). Для промышленных изделий, требующих высокую перегрузочную способность, рекомендуется сталь 30ХН2МФА изотермической закалки от 860 °С с отпуском при 300 °С, удовлетворяющая показателям ограниченной долговечности и трещиностойкости.
Разработаны и апробированы методики технического диагностирования интенсивно нагруженных металлоконструкций и расчетные оценки остаточного ресурса конструкций, выполненных из малоуглеродистых и низколегированных сталей, основными предельными состояниями которых являются накопленная усталостная поврежденность и развитие усталостных трещин критической величины.
Практическая значимость работы
Проведенные исследования нашли практическое использование:
для выбора составов и термической обработки высокопрочных сталей по показателям ограниченной долговечности и трещиностойкости при высоких уровнях перегрузки (ГУП КБ приборостроения, г. Тула, заключение об использовании от 22.01.2004);
для выбора режима отпуска закаленной аустенито-мартенситной стали 08Х14АН4МДБ, отвечающего требуемому сопротивлению усталости (ИМЕТ РАН, г. Москва);
при разработке способа диагностики стальных конструкций по накопленной макропластической деформации локальных участков поверхности (патент РФ №2170923, G01N21/88, G01B11/30);
при выполнении экспертных работ и технического диагностирования металлоконструкций грузоподъемных кранов по показателям живучести (НИИ промышленной и экологической безопасности ЮРГТУ, г. Новочеркасск, заключение об использовании от 16.05.2008).
в учебном процессе для студентов подготовки бакалавров, специалистов, магистров и аспирантов по курсам дисциплин «Физика прочности и пластичности» «Проблемы качества и материаловедение, экспертиза и причины отказов» (спец. 150702), «Конструкционная прочность» (спец. 190100), для которых подготовлено и издано учебное пособие («Механика разрушения», Тула, ТулГУ, 1999. - 273 с.)
Научная новизна полученных результатов состоит в следующем:
Для сталей с различной структурной неоднородностью, включающих феррито-перлитные с мягкой матрицей и твердыми составляющими, аустенито-мартенситные с твердой матрицей и пластичными прослойками, а также мартенситные с жесткими структурами, получены регрессионные кривые усталости в широком диапазоне амплитуд напряжений устанавливающие зависимости числа циклов до образования трещин и до разрушения от масштабов циклических пластических деформаций и степени гетерогенности структур.
Установлены: монотонный характер роста пластической слабодеформированной макрозоны в феррито-перлитных малоуглеродистых сталях в условиях асимметричных циклов и плосконапряженного состояния, сопровождающийся утяжкой поперечного сечения, и негомогенный характер упрочнения сильнодеформированной микрозоны у вершины продвигающейся трещины.
Механизмом формирования пластической микрозоны в аустенито-мартенситных сталях является образование ориентированного мартенсита деформации перед вершиной растущей трещины в условиях плоскодеформированного состояния.
Механизмы зарождения и развития трещин в стали аустенито-мартенситного класса на сверхвысокой базе (>·10 8 циклов) проявляются в двух формах: посредством развития микропластических деформаций на включениях и слиянием пор на мартенситных субграницах.
Получены кинетические зависимости скорости роста трещин в областях 5·10-10…10-8 м/цикл. в аустенито-мартенситных и 10-8…10-4 м/цикл. в мартенситных высокопрочных сталях от амплитуд коэффициента интенсивности напряжений для нагружений. Определены показатели живучести высокопрочных сталей с трещиной в зоне многоцикловой усталости. Оба диапазона изменения скорости роста трещин описываются зависимостями одного типа и соответствуют стабильному участку кинетической диаграммы усталостного разрушения.
Предложена обобщенная кривая усталости, на которой выделены критические напряжения, отвечающие сменам механизмов зарождения и развития трещин, определяемым в зависимости от масштаба циклической пластической деформации, структурного и напряженного состояний сталей (феррито-перлитных, мартенситных и аустенито-мартенситных).
Установлено, что при средних перегрузках наибольшей долговечностью обладают азотосодержащие аустенито-мартенситные стали (для стали 08Х14АН4МДБ закалка от 1050 °С с отпуском при 400 °С). Для промышленных изделий, требующих высокую перегрузочную способность, рекомендуется сталь 30ХН2МФА изотермической закалки от 860 °С с отпуском при 300 °С, удовлетворяющая показателям ограниченной долговечности и трещиностойкости.
Разработаны и апробированы методики технического диагностирования интенсивно нагруженных металлоконструкций и расчетные оценки остаточного ресурса конструкций, выполненных из малоуглеродистых и низколегированных сталей, основными предельными состояниями которых являются накопленная усталостная поврежденность и развитие усталостных трещин критической величины.
Практическая значимость работы
Проведенные исследования нашли практическое использование:
для выбора составов и термической обработки высокопрочных сталей по показателям ограниченной долговечности и трещиностойкости при высоких уровнях перегрузки (ГУП КБ приборостроения, г. Тула, заключение об использовании от 22.01.2004);
для выбора режима отпуска закаленной аустенито-мартенситной стали 08Х14АН4МДБ, отвечающего требуемому сопротивлению усталости (ИМЕТ РАН, г. Москва);
при разработке способа диагностики стальных конструкций по накопленной макропластической деформации локальных участков поверхности (патент РФ №2170923, G01N21/88, G01B11/30);
при выполнении экспертных работ и технического диагностирования металлоконструкций грузоподъемных кранов по показателям живучести (НИИ промышленной и экологической безопасности ЮРГТУ, г. Новочеркасск, заключение об использовании от 16.05.2008).
в учебном процессе для студентов подготовки бакалавров, специалистов, магистров и аспирантов по курсам дисциплин «Физика прочности и пластичности» «Проблемы качества и материаловедение, экспертиза и причины отказов» (спец. 150702), «Конструкционная прочность» (спец. 190100), для которых подготовлено и издано учебное пособие («Механика разрушения», Тула, ТулГУ, 1999. - 273 с.)