Металловедение
Металлургия
Дисертация
  • формат pdf
  • размер 4,83 МБ
  • добавлен 18 ноября 2016 г.
Болдырев Д.А. Комбинированное влияние технологических параметров модифицирования и микролегирования на структуру и свойства конструкционных чугунов
Автореферат диссертации на соискание учёной степени доктора технических наук: 05.16.01 − Металловедение и термическая обработка металлов, 05.16.04 − Литейное производство. — АВТОВАЗ. — Москва, 2009. — 40 с.
Научный консультант: доктор физико-математических наук М.М. Криштал.
Цель работы:
Повышение качества и стабильности свойств конструкционных чугунов с различным типом графита, фазовым составом и структурой металла матрицы при обеспечении комплекса требуемых свойств деталей машиностроения за счёт получения рациональной литой структуры путём применения модифицирования и микролегирования с учётом комбинированного влияния различных технологических параметров.
Научная новизна:
На основе систематизации и обобщения современных научных теорий и экспериментально-промышленных данных о модифицировании и микролегировании железоуглеродистых сплавов разработаны обобщающие подходы к получению рациональной литой структуры с требуемым уровнем механических свойств без изменения процессов металлургического и литейного циклов на основе разработки универсальных технологий модифицирования и микролегирования, позволяющих получать разные типы и марки конструкционных чугунов из расплава чугуна базового химического состава. Определены и исследованы механизмы комбинированных процессов модифицирования и микролегирования расплава чугуна, обеспечивающие целенаправленное формирование рациональной литой структуры с требуемым уровнем механических свойств. Исследованы параметры, определяющие формирование рациональной литой структуры в конструкционных чугунах под влиянием модифицирующих и легирующих элементов, вводимых на различных этапах технологического цикла.
Обнаружено явление образования большого количества мелких глобулей вторичного графита и конгломератов крупных глобулей первичного графита при 4 модифицировании ВЧШГ магниевым модификатором с лантаном. Статистическое распределение диаметров графитных включений характеризуется как ярко выраженное бимодальное асимметричное. При этом одна мода соответствует выделениям глобулей первичного графита, а вторая – вторичного (меньшего размера). Образование конгломератов глобулей первичного графита объясняется уменьшением скорости их роста, что повышает вероятность коагуляции (сгущения) графитных глобулей в жидком расплаве без коалесценции. Снижением скорости роста графита также объясняется задержка выделения графита из аустенита и формирование мелких глобулей вторичного графита. Более позднее по времени выделение вторичного графита компенсирует усадочные процессы в отливке в момент прекращения функционирования прибылей, что обеспечивает снижение пористости и повышение механических свойств чугуна.
Установлена зависимость структурообразования ВЧШГ от стадийности ввода бария в расплав, заключающаяся в том, что при раннем графитизирующем модифицировании усиливается ферритообразование, снижается твёрдость и формируется преимущественно неправильная форма шаровидного графита ШГф4, а при позднем, наоборот, формируется преимущественно перлитная структура с правильной формой шаровидного графита ШГф5, повышается твёрдость. Это объясняется тем, что при позднем введении бария в расплав ВЧШГ создаётся его избыточная концентрация, превышающая необходимую для связывания в химические соединения поверхностно-активных примесей (O, S и др.). Избыточный барий тормозит рост графитных включений за счёт снижения к ним диффузии углерода из расплава. Оставшийся в аустените углерод способствует формированию перлитной металлической основы. Повышая поверхностное натяжение расплава чугуна, барий позволяет сформировать правильную шаровидную форму графита ШГф5 даже при недостатке растворённого магния. При раннем введении бария в расплав ВЧШГ происходит полное связывание адсорбированных на графитных включениях поверхностно-активных примесей, за счёт чего происходит их очищение и дальнейший рост за счёт диффузии углерода из расплава при формировании преимущественно ферритной структуры. Постепенное уменьшение в расплаве чугуна содержания магния и бария вызывает снижение поверхностного натяжения, что приводит к нарушению равномерного роста базисных плоскостей шаровидного графита на конечной стадии его формирования и получению неправильной объёмной формы ШГф4.
Обнаружено и объяснено явление морфологической аномалии графитообразования в СЧПГ с низким содержанием серы (до 0,05%) и высоким содержании азота при введении в расплав добавок циркония и стронция. Морфологическая аномалия характеризуется наличием аномального графита, представляющего собой смесь форм ПГр1, ПГр7, ПГр8 и ПГр9, неравномерно распределённых по объёму отливки. Учитывая наиболее сильное химическое сродство циркония к азоту, его введение в расплав чугуна с растворённым азотом позволяет получить графитизирующий эффект за счёт образования нитрида циркония, являющегося ЦЗГ. Стронций, обладая высоким сродством к сере, проявляет модифицирующие свойства, образуя сульфиды стронция при содержании серы в чугуне не ниже 0,05%. При более низком содержании серы в чугуне несвязанный стронций начинает тормозить процесс графитизации и подавлять действие других графитизирующих элементов.
Установлены особенности каталитического влияния Bi и Te на структурообразование чугуна при встречном модифицировании, заключающиеся в следующем. При введении Bi и Te совместно с графитизирующим модификатором на ранней стадии (ковшевом модифицировании) они консервируют находящиеся в расплаве ЦЗГ, представляющие собой как недорастворившиеся включения графита, привнесённые из шихты, так и продукты реакции графитизирующего модификатора с примесями чугуна, и препятствуют как их дальнейшему росту, так и их растворению в расплаве. Проявлениемэтого эффекта является измельчение графитной фазы, увеличение длительности графитизирующего эффекта и перлитизация структуры чугуна. При введении Bi и Te в расплав чугуна на ранней стадии и последующем его графитизирующим модифицировании на поздней стадии (в предкристаллизационный период) ПАЭ консервируют только находящиеся в расплаве недорастворившиеся включения графита, перешедшие из шихты, после чего за счёт графитизирующего эффекта разблокируются уже существующие и формируются новые ЦЗГ из продуктов реакции графитизирующего модификатора с примесями чугуна. При этом происходит измельчение графитной фазы и ферритизация структуры чугуна.
С учетом различного влияния, а также стоимости компонентов, вводимых в модификаторы и лигатуры, проведена оптимизация их составов и разработаны наиболее экономичные модификаторы для получения ВЧШГ ковшевым модифицированием («тяжёлая» лигатура Fe-Si-Cu-Mg-РЗМ) и ЧВГ внутриформенным модифицированием (модификатор ФСМг6РЗМ1,5 с пониженным содержанием кальция, бария и алюминия).
Определена зависимость контактной прочности СЧПГ от уровня его микролегирования марганцем и хромом. Диапазон содержания легирующих элементов-карбидообразователей учитывает как их положительное (повышение микротвёрдости и термостабильности перлита за счёт образования легированного цементита), так и отрицательное влияние: снижение (при значительных концентрациях этих элементов) прочности матрицы чугуна в рабочем контакте.
Установлена зависимость трещиностойкости СЧПГ от содержания углерода и кремния при неизменном углеродном эквиваленте. Показано, что снижение содержания кремния в феррите перлита при одновременном увеличении содержания свободного графита и сохранении углеродного эквивалента приводит к повышению трещиностойкости и износостойкости СЧПГ. Это объясняется увеличением пластичности феррита при уменьшении концентрации кремния и повышением содержания свободного графита в матрице чугуна, что, с одной стороны, усиливает смазывающий эффект, а, с другой, приводит к повышению теплопроводности, обусловливая повышение трещиностойкости.
Определена зависимость износа чугуна от содержания в нём серы. Показано, что эта зависимость имеет хорошо выраженный минимум, обусловленный конкуренцией двух механизмов: во-первых, усилением смазывающего эффекта с возрастанием объёмной доли сульфидов марганца и, во-вторых, появлением охрупчивания при превышении размером сульфидных включений толщины графитных пластинок, что проявляется при увеличении содержания серы выше определённой концентрации − 0,12%.
Практическая значимость и реализация результатов работы:
Для всей номенклатуры отливок чугунолитейного и вспомогательного производств ОАО «АВТОВАЗ» разработаны технологические схемы получения отливок из основных марок ВЧШГ и ЧВГ ковшевым модифицированием без изменения существующего состава шихты, оборудования и оснастки в зависимости от требуемой марки: Gh56-40-05, Gh65-48-05 − технологии «ковш с крышкой», «сэндвич»-процесс; ЧВГ40, ВЧ50 − технология «заливка сверху», «контейнерная» технология; Gh75-50-03 − технология модифицирования «тяжёлой» лигатурой на медной основе.
Разработана технологическая схема получения ЧВГ внутриформенным модифицированием РЗМ-содержащим безмагниевым модификатором, включающая проведение предварительной графитизирующей обработки, предшествующей основному модифицированию.
В чугунолитейном производстве ОАО «АВТОВАЗ» внедрена технология вторичного (позднего) модифицирования ВЧШГ брикетированными отсевами изферросилиция с активными графитизирующими добавками и успешно опробована технология вторичного (позднего) модифицирования ВЧШГ литыми вставками. Внедрены брикеты из отсевов модификаторов ФС65Ба1 и ФС75.
Предложены универсальные технологические схемы получения СЧПГ в зависимости от содержания серы и габаритов получаемых отливок с использованием ковшевого и внутриформенного модифицирования. В чугунолитейном производстве ОАО «АВТОВАЗ» для получения отливок из серого чугуна с низким содержанием серы (Gh190) внедрён графитизирующий модификатор ФС75Ба2,5, а для отливок с высоким содержанием серы (СЧ40) − ФС75СтЦр.
Разработаны технологии графитизирующего модифицирования СЧПГ и ВЧШГ (высоких марок − свыше ВЧ70) смесевыми комплексными модификаторами нового поколения. Для СЧПГ технология состоит из двух этапов − предварительное графитизирующее модифицирование в ковше + последующее графитизирующее модифицирование в стояке формы; для ВЧШГ технология включает только проведение поздней графитизирующей обработки чугуна в стояке формы.
В ОАО «АЛНАС» внедрено изготовление дисков переднего тормоза из чугуна Gh190 с содержанием серы 0,11…0,13% вместо 0,01…0,03%, что привело к значительному повышению их эксплуатационных свойств. Подобрана оптимальная концентрация серы в чугуне, обеспечивающая его наибольший ресурс в паре с материалом тормозной колодки. По результатам стендовых натурных испытаний при удовлетворительной трещиностойкости повышение эксплуатационного ресурса тормозных дисков составляет 40%, тормозных колодок − 12%. При этом увеличена стойкость обрабатывающего инструмента более чем в 2 раза при содержании серы в чугуне свыше 0,08%.
Во вспомогательном производстве ОАО «АВТОВАЗ» для новой перспективной модели на платформе С − ВАЗ-2116 разработана конкурентоспособная технология получения отливок деталей «Кулак поворотный» и «Корпус подшипника ступицы заднего колеса» из ВЧШГ ферритного класса с высокими пластическими свойствами марки ВЧ40 взамен поковок из стали АЦ40ХГНМ.
На практике доказана целесообразность использования модификатора для встречного модифицирования как дополнительной присадки к классическим графитизирующим модификаторам, способствующей достижению рациональной литой структуры чугуна.
Результаты исследований внедрены в металлургическом производстве ОАО «АВТОВАЗ», получено 8 актов внедрения с общим экономическим эффектом 22 млн. 112 тыс. рублей в текущих ценах 2005-2008 гг.