• формат pdf
  • размер 4.03 МБ
  • добавлен 04 октября 2011 г.
Bender E.A., Williamson S.G. Foundations of Combinatorics with Applications
Издательство Dover Publications, 2005, -469 pp.

Combinatorics, the mathematics of the discrete, has blossomed in this generation. On the theoretical side, a variety of tools, concepts and insights have been developed that allow us to solve previously intractable problems, formulate new problems and connect previously unrelated topics. On the applied side, scientists from physicists to biologists have found combinatorics essential in their research. In all of this, the interaction between computer science and mathematics stands out as a major impetus for theoretical developments and for applications of combinatorics. This text provides an introduction to the mathematical foundations of this interaction and to some of its results.
This book does not assume any previous knowledge of combinatorics or discrete mathematics. Except for a few items which can easily be skipped over and some of the material on generating functions in Part IV, calculus is not required. What is required is a certain level of ability or sophistication in dealing with mathematical concepts. The level of mathematical sophistication that is needed is about the same as that required in a solid beginning calculus course.
You may have noticed similarities and differences in how you think about various fields of mathematics such as algebra and geometry. In fact, you may have found some areas more interesting or more difficult than others partially because of the different thought pattes required. The field of combinatorics will also require you to develop some new thought pattes. This can sometimes be a difficult and frustrating process. Here is where patience, mathematical sophistication and a willingness to ask stupid questions can all be helpful. Combinatorics differs as much from mathematics you are likely to have studied previously as algebra differs from geometry. Some people find this disorienting and others find it fascinating. The introductions to the parts and to the chapters can help you orient yourself as you lea about combinatorics. Don’t skip them.
Because of the newness of much of combinatorics, a significant portion of the material in this text was only discovered in this generation. Some of the material is closely related to current research. In contrast, the other mathematics courses you have had so far probably contained little if anything that was not known in the Nineteenth Century. Welcome to the frontiers!

Preface.
Counting and Listing.
Basic Counting.
Functions.
Decision Trees.
Sieving Methods.
Graphs.
Basic Concepts in Graph Theory.
A Sampler of Graph Topics.
Recursion.
nduction and Recursion.
Sorting Theory.
Rooted Plane Trees.
Generating Functions.
Ordinary Generating Functions.
Generating Function Topics.
A Induction.
B Rates of Growth and Analysis of Algorithms.
C Basic Probability.
D Partial Fractions.
Solutions to Odd Exercises and Most Appendix Exercises.
Смотрите также

Crnkovi? D., Tonchev V. (eds.) Information Security, Coding Theory and Related Combinatorics. Information Coding and Combinatorics

  • формат pdf
  • размер 6.78 МБ
  • добавлен 15 октября 2011 г.
Издательство IOS Press, 2011, -460 pp. This book contains papers based on lectures presented at the NATO Advanced Study Institute "Information Security and Related Combinatorics", held in the beautiful town of Opatija at the Adriatic Coast of Croatia from May 31 to June 11, 2010. On behalf of all participants, we would like to thank the NATO Science for Peace and Security Programme for providing funds for the conference, as well as the local spo...

Ferland K. Discrete Mathematics: An Introduction to Proofs and Combinatorics

  • формат pdf
  • размер 9.2 МБ
  • добавлен 29 января 2011 г.
Cengage Learning, 2008. - 632 Pages. Discrete Mathematics combines a balance of theory and applications with mathematical rigor and an accessible writing style. The author uses a range of examples to teach core concepts, while corresponding exercises allow students to apply what they learn. Throughout the text, engaging anecdotes and topics of interest inform as well as motivate learners. The text is ideal for one- or two-semester courses and fo...

Fulton W. Young Tableaux: With Applications to Representation Theory and Geometry

  • формат djvu
  • размер 2.24 МБ
  • добавлен 31 января 2012 г.
Cambridge University Press, 1997. - 270 Pages. This book develops the combinatorics of Young tableaux and shows them in action in the algebra of symmetric functions, representations of the symmetric and general linear groups, and the geometry of flag varieties. The first part of the book is a self-contained presentation of the basic combinatorics of Young tableaux, including the remarkable constructions of "bumping" and "sliding", and several i...

Golumbic M.C., Hartman I.B.-A. Graph Theory, Combinatorics and Algorithms: Interdisciplinary Applications

  • формат pdf
  • размер 10.29 МБ
  • добавлен 12 декабря 2010 г.
Sprіnger, 2005. - 301 pages. Graph Theory, Combinatorics and Algorithms: Interdisciplinary Applications focuses on discrete mathematics and combinatorial algorithms interacting with real world problems in computer science, operations research, applied mathematics and engineering. The book contains eleven chapters written by experts in their respective fields, and covers a wide spectrum of high-interest problems across these discipline domains. A...

Graham R.L., Gr?tschel M., Lov?sz L. (eds.) Handbook of Combinatorics. Volume 2

Справочник
  • формат djvu
  • размер 19.61 МБ
  • добавлен 04 октября 2011 г.
Издательство Elsevier, 1995, -1280 pp. Combinatorics belongs to those areas of mathematics having experienced a most impressive growth in recent years. This growth has been fuelled in large part by the increasing importance of computers, the needs of computer science and demands from applications where discrete models play more and more important roles. But also more classical branches of mathematics have come to recognize that combinatorial str...

Paine S.E. Applied Combinatorics

  • формат pdf
  • размер 861.44 КБ
  • добавлен 06 января 2012 г.
University of Colorado, 2003, -216 pp. The course at CU-Denver for which these notes were assembled, Math 6409 (Applied Combinatorics), deals more or less entirely with enumerative combinatorics. Other courses deal with combinatorial structures such as Latin squares, designs of many types, finite geometries, etc. This course is a one semester course, but as it has been taught different ways in different semesters, the notes have grown to contain...

Ray-Chaudhuri D. Coding Theory and Design Theory. Part I

  • формат pdf
  • размер 10.88 МБ
  • добавлен 15 октября 2011 г.
Издательство Springer, 1990, -252 pp. This book is based on the proceedings of a workshop which was an integral part of the 1987-88 IMA program on Applied Combinatorics. Coding Theory and Design theory are areas of combinatorics which found rich applications of algebraic structures and are closely interconnected. Coding theory has developed into a rich and beautiful example of abstract sophisticated mathematics being applied successfully to solv...

Reed D.F., Sales C.L. Recent Advances in Algorithms and Combinatorics

  • формат pdf
  • размер 1.54 МБ
  • добавлен 04 октября 2011 г.
Издательство Springer, 2002, -365 pp. Combinatorics is one of the fastest growing fields of mathematics. In large measure this is because many practical problems can be modeled and then efficiently solved using combinatorial theory. This real world motivation for studying algorithmic combinatorics has led not only to the development of many software packages but also to some beautiful mathematics which has no direct application to applied proble...

Van Lint J.H., Wilson R.M. A Course in Combinatorics

  • формат djvu
  • размер 3.48 МБ
  • добавлен 19 марта 2011 г.
Cambridge University, 1993. - 538 pages. This major textbook, a product of many years' teaching, will appeal to all teachers of combinatorics who appreciate the breadth and depth of the subject. The authors exploit the fact that combinatorics requires comparatively little technical background to provide not only a standard introduction but also a view of some contemporary problems. All of the 36 chapters are in bite-size portions; they cover a g...

Wilf H.S. Generatingfunctionology

  • формат pdf
  • размер 1.54 МБ
  • добавлен 03 июля 2011 г.
A K Peters, 2006. - 245 pages. Generating functions, one of the most important tools in enumerative combinatorics, are a bridge between discrete mathematics and continuous analysis. Generating functions have numerous applications in mathematics, especially in. * Combinatorics. * Probability Theory. * Statistics. * Theory of Markov Chains. * Number Theory. One of the most important and relevant recent applications of combinatorics lies in th...